scispace - formally typeset
Search or ask a question
Author

Joseph A. Yedinak

Bio: Joseph A. Yedinak is an academic researcher from Fairchild Semiconductor International, Inc.. The author has contributed to research in topics: Trench & Semiconductor device. The author has an hindex of 17, co-authored 60 publications receiving 1860 citations.


Papers
More filters
Patent
31 May 2006
TL;DR: In this article, a number of charge balancing techniques and other techniques for reducing parasitic capacitance to arrive at different embodiments for power devices with improved voltage performance, higher switching speed, and lower on-resistance.
Abstract: Various embodiments for improved power devices as well as their methods of manufacture, packaging and circuitry incorporating the same for use in a wide variety of power electronic applications are disclosed. One aspect of the invention combines a number of charge balancing techniques and other techniques for reducing parasitic capacitance to arrive at different embodiments for power devices with improved voltage performance, higher switching speed, and lower on-resistance. Another aspect of the invention provides improved termination structures for low, medium and high voltage devices. Improved methods of fabrication for power devices are provided according to other aspects of the invention. Improvements to specific processing steps, such as formation of trenches, formation of dielectric layers inside trenches, formation of mesa structures and processes for reducing substrate thickness, among others, are presented. According to another aspect of the invention, charge balanced power devices incorporate temperature and current sensing elements such as diodes on the same die. Other aspects of the invention improve equivalent series resistance (ESR) for power devices, incorporate additional circuitry on the same chip as the power device and provide improvements to the packaging of charge balanced power devices.

664 citations

Patent
27 Apr 2011
TL;DR: A power device includes a semiconductor region which in turn includes a plurality of alternately arranged pillars of first and second conductivity type as discussed by the authors, and each of the plurality of pillars of second conductivities type further includes an implant portion filled with semiconductor material.
Abstract: A power device includes a semiconductor region which in turn includes a plurality of alternately arranged pillars of first and second conductivity type. Each of the plurality of pillars of second conductivity type further includes a plurality of implant regions of the second conductivity type arranged on top of one another along the depth of pillars of second conductivity type, and a trench portion filled with semiconductor material of the second conductivity type directly above the plurality of implant regions of second conductivity type.

188 citations

Patent
02 Feb 2010
TL;DR: In this article, various structures and methods for improving the performance of trench-shielded power semiconductor devices and the like are described, and the authors also describe various methods to improve the performance.
Abstract: Various structures and methods for improving the performance of trench-shielded power semiconductor devices and the like are described.

150 citations

Patent
24 May 2006
TL;DR: In this paper, a gate electrode is disposed in the gate trench over but insulated from the at least one conductive shield electrode, and a gate dielectric layer is formed such that it flares out and extends directly under the body region.
Abstract: A field effect transistor includes a body region of a first conductivity type over a semiconductor region of a second conductivity type. A gate trench extends through the body region and terminates within the semiconductor region. At least one conductive shield electrode is disposed in the gate trench. A gate electrode is disposed in the gate trench over but insulated from the at least one conductive shield electrode. A shield dielectric layer insulates the at lease one conductive shield electrode from the semiconductor region. A gate dielectric layer insulates the gate electrode from the body region. The shield dielectric layer is formed such that it flares out and extends directly under the body region.

140 citations

Patent
25 Nov 2009
TL;DR: Exemplary power semiconductor devices with features providing increased breakdown voltage and other benefits are disclosed in this article, where the authors present a comparison of different types of power semiconductors with different benefits.
Abstract: Exemplary power semiconductor devices with features providing increased breakdown voltage and other benefits are disclosed.

132 citations


Cited by
More filters
Patent
01 Aug 2008
TL;DR: In this article, the oxide semiconductor film has at least a crystallized region in a channel region, which is defined as a region of interest (ROI) for a semiconductor device.
Abstract: An object is to provide a semiconductor device of which a manufacturing process is not complicated and by which cost can be suppressed, by forming a thin film transistor using an oxide semiconductor film typified by zinc oxide, and a manufacturing method thereof. For the semiconductor device, a gate electrode is formed over a substrate; a gate insulating film is formed covering the gate electrode; an oxide semiconductor film is formed over the gate insulating film; and a first conductive film and a second conductive film are formed over the oxide semiconductor film. The oxide semiconductor film has at least a crystallized region in a channel region.

1,501 citations

Patent
23 Jan 2007
TL;DR: In this paper, a gate electrode is disposed, through a gate insulating film, in a trench adjacent to the main cell, and a buffer resistor having an infinitely large resistance value is inserted between the buffer layer and emitter electrode.
Abstract: A power semiconductor device includes trenches disposed in a first base layer of a first conductivity type at intervals to partition main and dummy cells, at a position remote from a collector layer of a second conductivity type. In the main cell, a second base layer of the second conductivity type, and an emitter layer of the first conductivity type are disposed. In the dummy cell, a buffer layer of the second conductivity type is disposed. A gate electrode is disposed, through a gate insulating film, in a trench adjacent to the main cell. A buffer resistor having an infinitely large resistance value is inserted between the buffer layer and emitter electrode. The dummy cell is provided with an inhibiting structure to reduce carriers of the second conductivity type to flow to and accumulate in the buffer layer from the collector layer.

609 citations

Patent
Young-Gu Jin1, Yoon-dong Park1, Won-joo Kim1, Suk-pil Kim1, Seung-Hoon Lee1 
03 Aug 2007
TL;DR: In this article, a non-volatile memory device may include at least one semiconductor column, and a charge storage layer may be between the first gate and the second gate.
Abstract: Provided are a non-volatile memory device that may expand to a stacked structure and may be more easily highly integrated and an economical method of fabricating the non-volatile memory device. The non-volatile memory device may include at least one semiconductor column. At least one first control gate electrode may be arranged on a first side of the at least one semiconductor column. At least one second control gate electrode may be arranged on a second side of the at least one semiconductor column. A first charge storage layer may be between the at least one first control gate electrode and the at least one semiconductor column. A second charge storage layer may be between the at least one second control gate electrode and the at least one semiconductor column.

255 citations

Patent
20 Dec 2011
TL;DR: In this paper, a capacitively coupled plasma (CCP) unit is described inside a process chamber, and a pedestal is positioned below a gas reaction region into which the activated gas travels from the CCP unit.
Abstract: Substrate processing systems are described that have a capacitively coupled plasma (CCP) unit positioned inside a process chamber. The CCP unit may include a plasma excitation region formed between a first electrode and a second electrode. The first electrode may include a first plurality of openings to permit a first gas to enter the plasma excitation region, and the second electrode may include a second plurality of openings to permit an activated gas to exit the plasma excitation region. The system may further include a gas inlet for supplying the first gas to the first electrode of the CCP unit, and a pedestal that is operable to support a substrate. The pedestal is positioned below a gas reaction region into which the activated gas travels from the CCP unit.

236 citations

Patent
08 Mar 2013
TL;DR: In this paper, the authors describe a system that includes a first plasma unit fluidly coupled with a first access of the chamber and configured to deliver a first precursor into the chamber through the first access.
Abstract: An exemplary system may include a chamber configured to contain a semiconductor substrate in a processing region of the chamber. The system may include a first remote plasma unit fluidly coupled with a first access of the chamber and configured to deliver a first precursor into the chamber through the first access. The system may still further include a second remote plasma unit fluidly coupled with a second access of the chamber and configured to deliver a second precursor into the chamber through the second access. The first and second access may be fluidly coupled with a mixing region of the chamber that is separate from and fluidly coupled with the processing region of the chamber. The mixing region may be configured to allow the first and second precursors to interact with each other externally from the processing region of the chamber.

235 citations