scispace - formally typeset
Search or ask a question
Author

Joseph B. Klemp

Other affiliations: Stanford University
Bio: Joseph B. Klemp is an academic researcher from National Center for Atmospheric Research. The author has contributed to research in topics: Weather Research and Forecasting Model & Storm. The author has an hindex of 53, co-authored 93 publications receiving 19174 citations. Previous affiliations of Joseph B. Klemp include Stanford University.


Papers
More filters
DOI
01 Jun 2005
TL;DR: The Weather Research and Forecasting (WRF) model as mentioned in this paper was developed as a collaborative effort among the NCAR Mesoscale and Microscale Meteorology (MMM) Division, the National Oceanic and Atmospheric Administration's (NOAA) National Centers for Environmental Prediction (NCEP) and Forecast System Laboratory (FSL), the Department of Defense's Air Force Weather Agency (AFWA) and Naval Research Laboratory (NRL), the Center for Analysis and Prediction of Storms (CAPS) at the University of Oklahoma, and the Federal Aviation Administration (F
Abstract: : The development of the Weather Research and Forecasting (WRF) modeling system is a multiagency effort intended to provide a next-generation mesoscale forecast model and data assimilation system that will advance both the understanding and prediction of mesoscale weather and accelerate the transfer of research advances into operations. The model is being developed as a collaborative effort ort among the NCAR Mesoscale and Microscale Meteorology (MMM) Division, the National Oceanic and Atmospheric Administration's (NOAA) National Centers for Environmental Prediction (NCEP) and Forecast System Laboratory (FSL), the Department of Defense's Air Force Weather Agency (AFWA) and Naval Research Laboratory (NRL), the Center for Analysis and Prediction of Storms (CAPS) at the University of Oklahoma, and the Federal Aviation Administration (FAA), along with the participation of a number of university scientists. The WRF model is designed to be a flexible, state-of-the-art, portable code that is an efficient in a massively parallel computing environment. A modular single-source code is maintained that can be configured for both research and operations. It offers numerous physics options, thus tapping into the experience of the broad modeling community. Advanced data assimilation systems are being developed and tested in tandem with the model. WRF is maintained and supported as a community model to facilitate wide use, particularly for research and teaching, in the university community. It is suitable for use in a broad spectrum of applications across scales ranging from meters to thousands of kilometers. Such applications include research and operational numerical weather prediction (NWP), data assimilation and parameterized-physics research, downscaling climate simulations, driving air quality models, atmosphere-ocean coupling, and idealized simulations (e.g boundary-layer eddies, convection, baroclinic waves).

2,567 citations

Journal ArticleDOI
TL;DR: The Advanced Research WRF (ARW) model is described, representative of this generation and of a class of models using explicit time-splitting integration techniques to efficiently integrate the Euler equations, and is the first fully compressible conservative-form nonhydrostatic atmospheric model suitable for both research and weather prediction applications.

1,847 citations

Journal ArticleDOI
TL;DR: In this article, a new three-dimensional cloud model was developed for investigating the dynamic character of convective storms, which solved the compressible equations of motion using a splitting procedure which provided numerical efficiency by treating the sound wave modes separately.
Abstract: A new three-dimensional cloud model has been developed for investigating the dynamic character of convective storms. This model solves the compressible equations of motion using a splitting procedure which provides numerical efficiency by treating the sound wave modes separately. For the subgrid turbulence processes, a time-dependent turbulence energy equation is solved which depends on local buoyancy, shear and dissipation. First-order closure is applied to nearly conservative variables with eddy coefficients based on the computed turbulence energy. Open lateral boundaries are incorporated in the model that respond to internal forcing and permit gravity waves to propagate out of the integration domain with little apparent reflection. Microphysical processes are included in the model using a Kessler-type parameterization. Simulations conducted for an unsheared environment reveal that the updraft temperatures follow a moist adiabatic lapse rate and that the convection is dissipated by water loadin...

1,453 citations

Journal ArticleDOI
TL;DR: In this article, the mechanics of long-lived, line-oriented, precipitating cumulus convection (squall lines) using two-and three-dimensional numerical models of moist convection are studied.
Abstract: We study herein the mechanics of long-lived, line-oriented, precipitating cumulus convection (squall lines) using two- and three-dimensional numerical models of moist convection. These models, used in juxtaposition, enable us to address the important theoretical issue of whether a squall line is a system of special, long-lived cells, or whether it is a long-lived system of ordinary, short-lived cells. Our review of the observational literature indicates that the latter is the most consistent paradigm for the vast majority of cases but, on occasion, a squall line may be composed of essentially steady, supercell thunderstorms. The numerical experiments presented herein show that either type of squall line may develop from an initial line-like disturbance depending on the magnitude and orientation of the environmental shear with respect to the line. With shallow shear, oriented perpendicular to the line, a long-lived line evolves containing individually short-lived cells. Our analysis of this type o...

1,269 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of vertical wind shear and buoyancy on convective storm structure and evolution were investigated with the use of a three-dimensional numerical cloud model, by varying the magnitude of buoyant energy and one-directional vertical shear over a wide range of environmental conditions associated with severe storms.
Abstract: The effects of vertical wind shear and buoyancy on convective storm structure and evolution are investigated with the use of a three-dimensional numerical cloud model. By varying the magnitude of buoyant energy and one-directional vertical shear over a wide range of environmental conditions associated with severe storms, the model is able to produce a spectrum of storm types qualitatively similar to those observed in nature. These include short-lived single cells, certain types of multicells and rotating supercells. The relationship between wind shear and buoyancy is expressed in terms of a nondimensional convective parameter which delineates various regimes of storm structure and, in particular, suggests optimal conditions for the development of supercell type storms. Applications of this parameter to well-documented severe storm cases agree favorably with the model results, suggesting both the value of the model in studying these modes of convection as well as the value of this representation i...

1,157 citations


Cited by
More filters
DOI
01 Jan 2008
TL;DR: The Technical Note series provides an outlet for a variety of NCAR manuscripts that contribute in specialized ways to the body of scientific knowledge but which are not suitable for journal, monograph, or book publication.
Abstract: The Technical Note series provides an outlet for a variety of NCAR manuscripts that contribute in specialized ways to the body of scientific knowledge but which are not suitable for journal, monograph, or book publication. Reports in this series are issued by the NCAR Scientific Divisions ; copies may be obtained on request from the Publications Office of NCAR. Designation symbols for the series include: Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the National Science Foundation.

9,022 citations

Journal ArticleDOI
TL;DR: In this article, a revised vertical diffusion algorithm with a nonlocal turbulent mixing coefficient in the planetary boundary layer (PBL) is proposed for weather forecasting and climate prediction models, which improves several features compared with the Hong and Pan implementation.
Abstract: This paper proposes a revised vertical diffusion package with a nonlocal turbulent mixing coefficient in the planetary boundary layer (PBL). Based on the study of Noh et al. and accumulated results of the behavior of the Hong and Pan algorithm, a revised vertical diffusion algorithm that is suitable for weather forecasting and climate prediction models is developed. The major ingredient of the revision is the inclusion of an explicit treatment of entrainment processes at the top of the PBL. The new diffusion package is called the Yonsei University PBL (YSU PBL). In a one-dimensional offline test framework, the revised scheme is found to improve several features compared with the Hong and Pan implementation. The YSU PBL increases boundary layer mixing in the thermally induced free convection regime and decreases it in the mechanically induced forced convection regime, which alleviates the well-known problems in the Medium-Range Forecast (MRF) PBL. Excessive mixing in the mixed layer in the presenc...

5,363 citations

Journal ArticleDOI
TL;DR: Modifications to the Kain‐Fritsch convective parameterization evolved from an effort to produce desired effects in numerical weather prediction while also rendering the scheme more faithful to observations and cloud-resolving modeling studies.
Abstract: Numerous modifications to the Kain‐Fritsch convective parameterization have been implemented over the last decade. These modifications are described, and the motivating factors for the changes are discussed. Most changes were inspired by feedback from users of the scheme (primarily numerical modelers) and interpreters of the model output (mainly operational forecasters). The specific formulation of the modifications evolved from an effort to produce desired effects in numerical weather prediction while also rendering the scheme more faithful to observations and cloud-resolving modeling studies.

4,056 citations

Journal ArticleDOI
TL;DR: In this paper, a split-explicit hydrodynamic kernel for a realistic oceanic model is proposed, which addresses multiple numerical issues associated with mode splitting, and is compatible with a variety of centered and upstream-biased high-order advection algorithms, and helps to mitigate computational cost of expensive physical parameterization of mixing processes and submodels.

3,955 citations