scispace - formally typeset
Search or ask a question
Author

Joseph Bullock

Bio: Joseph Bullock is an academic researcher from United Nations. The author has contributed to research in topics: Applications of artificial intelligence & Context (language use). The author has an hindex of 6, co-authored 8 publications receiving 311 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present an overview of recent studies using Machine Learning and Artificial Intelligence to tackle many aspects of the COVID-19 crisis and highlight the need for international cooperation to maximize the potential of AI in this and future pandemics.
Abstract: COVID-19, the disease caused by the SARS-CoV-2 virus, has been declared a pandemic by the World Health Organization, which has reported over 18 million confirmed cases as of August 5, 2020 In this review, we present an overview of recent studies using Machine Learning and, more broadly, Artificial Intelligence, to tackle many aspects of the COVID-19 crisis We have identified applications that address challenges posed by COVID-19 at different scales, including: molecular, by identifying new or existing drugs for treatment;clinical, by supporting diagnosis and evaluating prognosis based on medical imaging and non-invasive measures;and societal, by tracking both the epidemic and the accompanying infodemic using multiple data sources We also review datasets, tools, and resources needed to facilitate Artificial Intelligence research, and discuss strategic considerations related to the operational implementation of multidisciplinary partnerships and open science We highlight the need for international cooperation to maximize the potential of AI in this and future pandemics ©2020 AI Access Foundation All rights reserved

315 citations

Journal ArticleDOI
TL;DR: An overview of recent studies using Machine Learning and, more broadly, Artificial Intelligence to tackle many aspects of the COVID-19 crisis at different scales including molecular, clinical, and societal applications is presented.
Abstract: COVID-19, the disease caused by the SARS-CoV-2 virus, has been declared a pandemic by the World Health Organization, with over 2.5 million confirmed cases as of April 23, 2020. In this review, we present an overview of recent studies using Machine Learning and, more broadly, Artificial Intelligence, to tackle many aspects of the COVID-19 crisis at different scales including molecular, clinical, and societal applications. We also review datasets, tools, and resources needed to facilitate AI research. Finally, we discuss strategic considerations related to the operational implementation of projects, multidisciplinary partnerships, and open science. We highlight the need for international cooperation to maximize the potential of AI in this and future pandemics.

110 citations

Journal ArticleDOI
TL;DR: In an unprecedented effort of scientific collaboration, researchers across fields are racing to support the response to COVID-19 and will require scalable approaches for data, model and code sharing; adapting applications to local contexts; and cooperation across borders.
Abstract: In an unprecedented effort of scientific collaboration, researchers across fields are racing to support the response to COVID-19. Making a global impact with AI tools will require scalable approaches for data, model and code sharing; adapting applications to local contexts; and cooperation across borders.

93 citations

Journal ArticleDOI
TL;DR: A fully automated approach to the rapid flood mapping currently carried out by many non-governmental, national and international organisations is presented, which reduces the time required to develop a flood map by 80%, while achieving strong performance over a wide range of locations and environmental conditions.
Abstract: Rapid response to natural hazards, such as floods, is essential to mitigate loss of life and the reduction of suffering. For emergency response teams, access to timely and accurate data is essential. Satellite imagery offers a rich source of information which can be analysed to help determine regions affected by a disaster. Much remote sensing flood analysis is semi-automated, with time consuming manual components requiring hours to complete. In this study, we present a fully automated approach to the rapid flood mapping currently carried out by many non-governmental, national and international organisations. We design a Convolutional Neural Network (CNN) based method which isolates the flooded pixels in freely available Copernicus Sentinel-1 Synthetic Aperture Radar (SAR) imagery, requiring no optical bands and minimal pre-processing. We test a variety of CNN architectures and train our models on flood masks generated using a combination of classical semi-automated techniques and extensive manual cleaning and visual inspection. Our methodology reduces the time required to develop a flood map by 80%, while achieving strong performance over a wide range of locations and environmental conditions. Given the open-source data and the minimal image cleaning required, this methodology can also be integrated into end-to-end pipelines for more timely and continuous flood monitoring.

74 citations

Journal ArticleDOI
03 Apr 2020
TL;DR: PulseSatellite is presented, a collaborative satellite image analysis tool which leverages neural network models that can be retrained on-the fly and adapted to specific humanitarian contexts and geographies.
Abstract: Humanitarian response to natural disasters and conflicts can be assisted by satellite image analysis In a humanitarian context, very specific satellite image analysis tasks must be done accurately and in a timely manner to provide operational support We present PulseSatellite, a collaborative satellite image analysis tool which leverages neural network models that can be retrained on-the fly and adapted to specific humanitarian contexts and geographies We present two case studies, in mapping shelters and floods respectively, that illustrate the capabilities of PulseSatellite

21 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review paper covers the entire pipeline of medical imaging and analysis techniques involved with COVID-19, including image acquisition, segmentation, diagnosis, and follow-up, and particularly focuses on the integration of AI with X-ray and CT, both of which are widely used in the frontline hospitals.
Abstract: The pandemic of coronavirus disease 2019 (COVID-19) is spreading all over the world. Medical imaging such as X-ray and computed tomography (CT) plays an essential role in the global fight against COVID-19, whereas the recently emerging artificial intelligence (AI) technologies further strengthen the power of the imaging tools and help medical specialists. We hereby review the rapid responses in the community of medical imaging (empowered by AI) toward COVID-19. For example, AI-empowered image acquisition can significantly help automate the scanning procedure and also reshape the workflow with minimal contact to patients, providing the best protection to the imaging technicians. Also, AI can improve work efficiency by accurate delineation of infections in X-ray and CT images, facilitating subsequent quantification. Moreover, the computer-aided platforms help radiologists make clinical decisions, i.e., for disease diagnosis, tracking, and prognosis. In this review paper, we thus cover the entire pipeline of medical imaging and analysis techniques involved with COVID-19, including image acquisition, segmentation, diagnosis, and follow-up. We particularly focus on the integration of AI with X-ray and CT, both of which are widely used in the frontline hospitals, in order to depict the latest progress of medical imaging and radiology fighting against COVID-19.

916 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present an overview of recent studies using Machine Learning and Artificial Intelligence to tackle many aspects of the COVID-19 crisis and highlight the need for international cooperation to maximize the potential of AI in this and future pandemics.
Abstract: COVID-19, the disease caused by the SARS-CoV-2 virus, has been declared a pandemic by the World Health Organization, which has reported over 18 million confirmed cases as of August 5, 2020 In this review, we present an overview of recent studies using Machine Learning and, more broadly, Artificial Intelligence, to tackle many aspects of the COVID-19 crisis We have identified applications that address challenges posed by COVID-19 at different scales, including: molecular, by identifying new or existing drugs for treatment;clinical, by supporting diagnosis and evaluating prognosis based on medical imaging and non-invasive measures;and societal, by tracking both the epidemic and the accompanying infodemic using multiple data sources We also review datasets, tools, and resources needed to facilitate Artificial Intelligence research, and discuss strategic considerations related to the operational implementation of multidisciplinary partnerships and open science We highlight the need for international cooperation to maximize the potential of AI in this and future pandemics ©2020 AI Access Foundation All rights reserved

315 citations

Journal ArticleDOI
TL;DR: This study proposes a weakly supervised deep learning strategy for detecting and classifying COVID-19 infection from CT images that can minimise the requirements of manual labelling of CT images but still be able to obtain accurate infection detection and distinguish CO VID-19 from non-COVID- 19 cases.
Abstract: An outbreak of a novel coronavirus disease (i.e., COVID-19) has been recorded in Wuhan, China since late December 2019, which subsequently became pandemic around the world. Although COVID-19 is an acutely treated disease, it can also be fatal with a risk of fatality of 4.03% in China and the highest of 13.04% in Algeria and 12.67% Italy (as of 8th April 2020). The onset of serious illness may result in death as a consequence of substantial alveolar damage and progressive respiratory failure. Although laboratory testing, e.g., using reverse transcription polymerase chain reaction (RT-PCR), is the golden standard for clinical diagnosis, the tests may produce false negatives. Moreover, under the pandemic situation, shortage of RT-PCR testing resources may also delay the following clinical decision and treatment. Under such circumstances, chest CT imaging has become a valuable tool for both diagnosis and prognosis of COVID-19 patients. In this study, we propose a weakly supervised deep learning strategy for detecting and classifying COVID-19 infection from CT images. The proposed method can minimise the requirements of manual labelling of CT images but still be able to obtain accurate infection detection and distinguish COVID-19 from non-COVID-19 cases. Based on the promising results obtained qualitatively and quantitatively, we can envisage a wide deployment of our developed technique in large-scale clinical studies.

301 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the rapid responses in the community of medical imaging (empowered by AI) toward COVID-19, including image acquisition, segmentation, diagnosis, and follow-up.
Abstract: (This paper was submitted as an invited paper to IEEE Reviews in Biomedical Engineering on April 6, 2020.) The pandemic of coronavirus disease 2019 (COVID-19) is spreading all over the world. Medical imaging such as X-ray and computed tomography (CT) plays an essential role in the global fight against COVID-19, whereas the recently emerging artificial intelligence (AI) technologies further strengthen the power of the imaging tools and help medical specialists. We hereby review the rapid responses in the community of medical imaging (empowered by AI) toward COVID-19. For example, AI-empowered image acquisition can significantly help automate the scanning procedure and also reshape the workflow with minimal contact to patients, providing the best protection to the imaging technicians. Also, AI can improve work efficiency by accurate delination of infections in X-ray and CT images, facilitating subsequent quantification. Moreover, the computer-aided platforms help radiologists make clinical decisions, i.e., for disease diagnosis, tracking, and prognosis. In this review paper, we thus cover the entire pipeline of medical imaging and analysis techniques involved with COVID-19, including image acquisition, segmentation, diagnosis, and follow-up. We particularly focus on the integration of AI with X-ray and CT, both of which are widely used in the frontline hospitals, in order to depict the latest progress of medical imaging and radiology fighting against COVID-19.

274 citations

Journal ArticleDOI
TL;DR: It is concluded that AI has not yet been impactful against COVID-19, and its use is hampered by a lack of data, and by too much data.
Abstract: This paper provides an early evaluation of Artificial Intelligence (AI) against COVID-19. The main areas where AI can contribute to the fight against COVID-19 are discussed. It is concluded that AI has not yet been impactful against COVID-19. Its use is hampered by a lack of data, and by too much data. Overcoming these constraints will require a careful balance between data privacy and public health, and rigorous human-AI interaction. It is unlikely that these will be addressed in time to be of much help during the present pandemic. In the meantime, extensive gathering of diagnostic data on who is infectious will be essential to save lives, train AI, and limit economic damages.

254 citations