scispace - formally typeset
Search or ask a question
Author

Joseph Fargione

Bio: Joseph Fargione is an academic researcher from The Nature Conservancy. The author has contributed to research in topics: Biodiversity & Greenhouse gas. The author has an hindex of 42, co-authored 86 publications receiving 15703 citations. Previous affiliations of Joseph Fargione include University of Minnesota & University of New Mexico.


Papers
More filters
Journal ArticleDOI
29 Feb 2008-Science
TL;DR: Converting rainforests, peatlands, savannas, or grasslands to produce food crop–based biofuels in Brazil, Southeast Asia, and the United States creates a “biofuel carbon debt” by releasing 17 to 420 times more CO2 than the annual greenhouse gas reductions that these biofuel reductions would provide by displacing fossil fuels.
Abstract: Increasing energy use, climate change, and carbon dioxide (CO2) emissions from fossil fuels make switching to lowcarbon fuels a high priority. Biofuels are a potential lowcarbon energy source, but whether biofuels offer carbon savings depends on how they are produced. Converting rainforests, peatlands, savannas, or grasslands to produce food-based biofuels in Brazil, Southeast Asia, and the United States creates a ‘biofuel carbon debt’ by releasing 17 to 420 times more CO2 than the annual greenhouse gas (GHG) reductions these biofuels provide by displacing fossil fuels. In contrast, biofuels made from waste biomass or from biomass grown on abandoned agricultural lands planted with perennials incur little or no carbon debt and offer immediate and sustained GHG advantages. Demand for alternatives to petroleum is increasing the production of biofuels from food crops such as corn, sugarcane, soybeans and palms. As a result, land in

3,856 citations

Journal ArticleDOI
13 Apr 2001-Science
TL;DR: Should past dependences of the global environmental impacts of agriculture on human population and consumption continue, 109 hectares of natural ecosystems would be converted to agriculture by 2050, accompanied by 2.4- to 2.7-fold increases in nitrogen- and phosphorus-driven eutrophication of terrestrial, freshwater, and near-shore marine ecosystems.
Abstract: During the next 50 years, which is likely to be the final period of rapid agricultural expansion, demand for food by a wealthier and 50% larger global population will be a major driver of global environmental change. Should past dependences of the global environmental impacts of agriculture on human population and consumption continue, 10(9) hectares of natural ecosystems would be converted to agriculture by 2050. This would be accompanied by 2.4- to 2.7-fold increases in nitrogen- and phosphorus-driven eutrophication of terrestrial, freshwater, and near-shore marine ecosystems, and comparable increases in pesticide use. This eutrophication and habitat destruction would cause unprecedented ecosystem simplification, loss of ecosystem services, and species extinctions. Significant scientific advances and regulatory, technological, and policy changes are needed to control the environmental impacts of agricultural expansion.

3,606 citations

Journal ArticleDOI
TL;DR: It is shown that NCS can provide over one-third of the cost-effective climate mitigation needed between now and 2030 to stabilize warming to below 2 °C.
Abstract: Better stewardship of land is needed to achieve the Paris Climate Agreement goal of holding warming to below 2 °C; however, confusion persists about the specific set of land stewardship options available and their mitigation potential. To address this, we identify and quantify "natural climate solutions" (NCS): 20 conservation, restoration, and improved land management actions that increase carbon storage and/or avoid greenhouse gas emissions across global forests, wetlands, grasslands, and agricultural lands. We find that the maximum potential of NCS-when constrained by food security, fiber security, and biodiversity conservation-is 23.8 petagrams of CO2 equivalent (PgCO2e) y-1 (95% CI 20.3-37.4). This is ≥30% higher than prior estimates, which did not include the full range of options and safeguards considered here. About half of this maximum (11.3 PgCO2e y-1) represents cost-effective climate mitigation, assuming the social cost of CO2 pollution is ≥100 USD MgCO2e-1 by 2030. Natural climate solutions can provide 37% of cost-effective CO2 mitigation needed through 2030 for a >66% chance of holding warming to below 2 °C. One-third of this cost-effective NCS mitigation can be delivered at or below 10 USD MgCO2-1 Most NCS actions-if effectively implemented-also offer water filtration, flood buffering, soil health, biodiversity habitat, and enhanced climate resilience. Work remains to better constrain uncertainty of NCS mitigation estimates. Nevertheless, existing knowledge reported here provides a robust basis for immediate global action to improve ecosystem stewardship as a major solution to climate change.

1,508 citations

Journal ArticleDOI
TL;DR: Biodiversity lies at the core of ecosystem processes fueling the authors' planet's vital life-support systems; its degradation--by us--is threatening their own well-being and will disproportionately impact the poor.
Abstract: The diversity of life on Earth is dramatically affected by human alterations of ecosystems [ 1]. Compelling evidence now shows that the reverse is also true: biodiversity in the broad sense affects the properties of ecosystems and, therefore, the benefits that humans obtain from them. In this article, we provide a synthesis of the most crucial messages emerging from the latest scientific literature and international assessments of the role of biodiversity in ecosystem services and human well-being. Human societies have been built on biodiversity. Many activities indispensable for human subsistence lead to biodiversity loss, and this trend is likely to continue in the future. We clearly benefit from the diversity of organisms that we have learned to use for medicines, food, fibers, and other renewable resources. In addition, biodiversity has always been an integral part of the human experience, and there are many moral reasons to preserve it for its own sake. What has been less recognized is that biodiversity also influences human well-being, including the access to water and basic materials for a satisfactory life, and security in the face of environmental change, through its effects on the ecosystem processes that lie at the core of the Earth's most vital life support systems ( Figure 1). Figure 1 Biodiversity Is Both a Response Variable Affected by Global Change Drivers and a Factor That Affects Human Well-Being Three recent publications from the Millennium Ecosystem Assessment [ 2–4], an initiative involving more than 1,500 scientists from all over the world [ 5], provide an updated picture of the fundamental messages and key challenges regarding biodiversity at the global scale. Chief among them are: (a) human-induced changes in land cover at the global scale lead to clear losers and winners among species in biotic communities; (b) these changes have large impacts on ecosystem processes and, thus, human well-being; and (c) such consequences will be felt disproportionately by the poor, who are most vulnerable to the loss of ecosystem services.

1,225 citations

Journal ArticleDOI
TL;DR: Residents of the C4 grass functional guild, the dominant guild in nearby native grasslands, reduced the major limiting resource, soil nitrate, to the lowest levels in midsummer and exhibited the greatest inhibitory effect on introduced species.
Abstract: A species-addition experiment showed that prairie grasslands have a structured, nonneutral assembly process in which resident species inhibit, via resource consumption, the establishment and growth of species with similar resource use patterns and in which the success of invaders decreases as diversity increases. In our experiment, species in each of four functional guilds were introduced, as seed, into 147 prairie–grassland plots that previously had been established and maintained to have different compositions and diversities. Established species most strongly inhibited introduced species from their own functional guild. Introduced species attained lower abundances when functionally similar species were abundant and when established species left lower levels of resources unconsumed, which occurred at lower species richness. Residents of the C4 grass functional guild, the dominant guild in nearby native grasslands, reduced the major limiting resource, soil nitrate, to the lowest levels in midsummer and exhibited the greatest inhibitory effect on introduced species. This simple mechanism of greater competitive inhibition of invaders that are similar to established abundant species could, in theory, explain many of the patterns observed in plant communities.

713 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI
22 Jul 2005-Science
TL;DR: Global croplands, pastures, plantations, and urban areas have expanded in recent decades, accompanied by large increases in energy, water, and fertilizer consumption, along with considerable losses of biodiversity.
Abstract: Land use has generally been considered a local environmental issue, but it is becoming a force of global importance. Worldwide changes to forests, farmlands, waterways, and air are being driven by the need to provide food, fiber, water, and shelter to more than six billion people. Global croplands, pastures, plantations, and urban areas have expanded in recent decades, accompanied by large increases in energy, water, and fertilizer consumption, along with considerable losses of biodiversity. Such changes in land use have enabled humans to appropriate an increasing share of the planet’s resources, but they also potentially undermine the capacity of ecosystems to sustain food production, maintain freshwater and forest resources, regulate climate and air quality, and ameliorate infectious diseases. We face the challenge of managing trade-offs between immediate human needs and maintaining the capacity of the biosphere to provide goods and services in the long term.

10,117 citations

Journal ArticleDOI
12 Feb 2010-Science
TL;DR: A multifaceted and linked global strategy is needed to ensure sustainable and equitable food security, different components of which are explored here.
Abstract: Continuing population and consumption growth will mean that the global demand for food will increase for at least another 40 years. Growing competition for land, water, and energy, in addition to the overexploitation of fisheries, will affect our ability to produce food, as will the urgent requirement to reduce the impact of the food system on the environment. The effects of climate change are a further threat. But the world can produce more food and can ensure that it is used more efficiently and equitably. A multifaceted and linked global strategy is needed to ensure sustainable and equitable food security, different components of which are explored here.

9,125 citations

Journal ArticleDOI
10 Jun 2005-Science
TL;DR: A majority of the bacterial sequences corresponded to uncultivated species and novel microorganisms, and significant intersubject variability and differences between stool and mucosa community composition were discovered.
Abstract: The human endogenous intestinal microflora is an essential “organ” in providing nourishment, regulating epithelial development, and instructing innate immunity; yet, surprisingly, basic features remain poorly described. We examined 13,355 prokaryotic ribosomal RNA gene sequences from multiple colonic mucosal sites and feces of healthy subjects to improve our understanding of gut microbial diversity. A majority of the bacterial sequences corresponded to uncultivated species and novel microorganisms. We discovered significant intersubject variability and differences between stool and mucosa community composition. Characterization of this immensely diverse ecosystem is the first step in elucidating its role in health and disease.

7,049 citations