scispace - formally typeset
Search or ask a question
Author

Joseph G. Marvin

Bio: Joseph G. Marvin is an academic researcher from Ames Research Center. The author has contributed to research in topics: Turbulence modeling & Turbulence. The author has an hindex of 18, co-authored 35 publications receiving 930 citations.

Papers
More filters
Proceedings ArticleDOI
01 Jan 1978
TL;DR: In this article, an investigation of the transonic flow over a circular arc airfoil was conducted to obtain basic information for turbulence modeling of shock-induced separated flows and to verify numerical computer codes which are being developed to simulate such flows.
Abstract: An investigation of the transonic flow over a circular arc airfoil was conducted to obtain basic information for turbulence modeling of shock-induced separated flows and to verify numerical computer codes which are being developed to simulate such flows. The investigation included the employment of a laser velocimeter to obtain data concerning the mean velocity, the shear stress, and the turbulent kinetic energy profiles in the flowfield downstream of the airfoil midchord where the flow features are more complex. Depending on the free-stream Mach number, the flowfield developed was either steady with shock-wave-induced separation extending from the foot of the shock wave to beyond the trailing edge or unsteady with a periodic motion also undergoing shock-induced separation. The experimental data were compared with the results of numerical simulations in which a computer code was employed that solved the time-dependent Reynolds' averaged compressible Navier-Stokes equations.

104 citations

Journal ArticleDOI
TL;DR: In this paper, Mars atmospheric composition and laminar convective heating and ablation were used to predict performance of heat protection systems during entry to predict the performance of a heat protection system during Mars entry.
Abstract: Mars atmospheric composition and laminar convective heating and ablation studied to predict performance of heat protection systems during entry

94 citations

Journal ArticleDOI
TL;DR: The status of turbulence modeling for external aerodynamic flows is reviewed, and closure concepts for the compressible form of the Reynolds-averaged Navier-Stokes equations are briefly outlined to establish a framework for comparison.
Abstract: The status of turbulence modeling for external aerodynamic flows is reviewed, and closure concepts for the compressible form of the Reynolds-averaged Navier-Stokes equations are briefly outlined to establish a framework for comparison. The importance of experimental requirements for developing and verifying turbulence models is emphasized. Attention is then given to three important flow categories: attached flows, separating and reattaching flows, and trailing-edge flows. Examples of comparisons between experiments and computations for twoand three-dimensional flows are presented to illustrate the status of modeling. It is shown that, for most two-dimensional attached flows, eddy viscosity concepts will probably be adequate. For attached three-dimensional flows, however, eddy-viscosity and Reynolds-stress models are both deficient, failing to predict the proper surface shear-stress in rapidly skewing boundary layers, regardless of whether they are pressure driven or strain driven.

86 citations

Journal ArticleDOI
TL;DR: In this paper, an investigation of the transonic flow over a circular arc airfoil was conducted to obtain basic information for turbulence modeling of shock-induced separated flows and to verify numerical computer codes which are being developed to simulate such flows.
Abstract: An investigation of the transonic flow over a circular arc airfoil was conducted to obtain basic information for turbulence modeling of shock-induced separated flows and to verify numerical computer codes which are being developed to simulate such flows. The investigation included the employment of a laser velocimeter to obtain data concerning the mean velocity, the shear stress, and the turbulent kinetic energy profiles in the flowfield downstream of the airfoil midchord where the flow features are more complex. Depending on the free-stream Mach number, the flowfield developed was either steady with shock-wave-induced separation extending from the foot of the shock wave to beyond the trailing edge or unsteady with a periodic motion also undergoing shock-induced separation. The experimental data were compared with the results of numerical simulations in which a computer code was employed that solved the time-dependent Reynolds' averaged compressible Navier-Stokes equations.

77 citations

Journal ArticleDOI
TL;DR: Heating rates in gas mixtures of planetary atmospheres predicted by equation using transport properties of gases at lower temperatures were shown in this paper, where the authors used an equation to predict the heating rate of planetary atmosphere.
Abstract: Heating rates in gas mixtures of planetary atmospheres predicted by equation using transport properties of gases at lower temperatures

57 citations


Cited by
More filters
Book
01 Sep 2013
TL;DR: In this article, the authors discuss the properties of high-temperature gas dynamics, including the effects of high temperature on the dynamics of Viscous Flow and Vibrational Nonequilibrium Flows.
Abstract: Some Preliminary Thoughts * Part I: Inviscid Hypersonic Flow * Hypersonic Shock and Expansion-Wave Relations * Local Surface Inclination Methods * Hypersonic Inviscid Flowfields: Approximate Methods * Hypersonic Inviscid Flowfields: Exact Methods * Part II: Viscous Hypersonic Flow * Viscous Flow: Basic Aspects, Boundary Layer Results, and Aerodynamic Heating * Hypersonic Viscous Interactions * Computational Fluid Dynamic Solutions of Hypersonic Viscous Flows * Part III: High-Temperature Gas Dynamics * High-Temperature Gas Dynamics: Some Introductory Considerations * Some Aspects of the Thermodynamics of Chemically Reacting Gases (Classical Physical Chemistry) * Elements of Statistical Thermodynamics * Elements of Kinetic Theory * Chemical Vibrational Nonequilibrium * Inviscid High-Temperature Equilibrium Flows * Inviscid High-Temperature Nonequilibrium Flows * Kinetic Theory Revisited: Transport Properties in High-Temperature Gases * Viscous High-Temperature Flows * Introduction to Radiative Gas Dynamics.

1,960 citations

01 Jan 1997
TL;DR: In this article, the analogy between heat and mass transfer is covered and applied in the analysis of heat transfer by conduction, convection and radiation, and the analysis is performed by using the handbook of numerical heat transfer.
Abstract: Handbook of Numerical Heat Transfer Free Full Download Links from Multiple Mirrors added by DL4W on 2015-04-10 02:13:35. Handbook of heat transfer / editors, W.M. Rohsenow, J.P. Hartnett. Y.I. Cho. m 3rd ed. p. cm. Includes bibliographical references and index. ISBN 0-07053555-8. Students investigate heat transfer by conduction, convection and radiation. The analogy between heat and mass transfer is covered and applied in the analysis.

1,644 citations

Book
22 Nov 2010
TL;DR: A comprehensive and systematic development of the basic concepts, principles, and procedures for verification and validation of models and simulations that are described by partial differential and integral equations and the simulations that result from their numerical solution.
Abstract: Advances in scientific computing have made modelling and simulation an important part of the decision-making process in engineering, science, and public policy. This book provides a comprehensive and systematic development of the basic concepts, principles, and procedures for verification and validation of models and simulations. The emphasis is placed on models that are described by partial differential and integral equations and the simulations that result from their numerical solution. The methods described can be applied to a wide range of technical fields, from the physical sciences, engineering and technology and industry, through to environmental regulations and safety, product and plant safety, financial investing, and governmental regulations. This book will be genuinely welcomed by researchers, practitioners, and decision makers in a broad range of fields, who seek to improve the credibility and reliability of simulation results. It will also be appropriate either for university courses or for independent study.

966 citations

Journal ArticleDOI
TL;DR: An extensive review of the literature in V&V in computational fluid dynamics (CFD) is presented, methods and procedures for assessing V &V are discussed, and a relatively new procedure for estimating experimental uncertainty is given that has proven more effective at estimating random and correlated bias errors in wind-tunnel experiments than traditional methods.

948 citations

Journal ArticleDOI
TL;DR: Verification and validation of computational simulations are the primary methods for building and quantifying this confidence in modeling and simulation.
Abstract: Developers of computer codes, analysts who use the codes, and decision makers who rely on the results of the analyses face a critical question: How should confidence in modeling and simulation be critically assessed? Verification and validation (V&V) of computational simulations are the primary methods for building and quantifying this confidence. Briefly, verification is the assessment of the accuracy of the solution to a computational model. Validation is the assessment of the accuracy of a computational simulation by comparison with experimental data. In verification, the relationship of the simulation to the real world is not an issue. In validation, the relationship between computation and the real world, i.e., experimental data, is the issue.

735 citations