scispace - formally typeset
Search or ask a question
Author

Joseph G. Montalvo

Bio: Joseph G. Montalvo is an academic researcher. The author has contributed to research in topics: Urease & Urea. The author has an hindex of 1, co-authored 1 publications receiving 269 citations.
Topics: Urease, Urea

Papers
More filters

Cited by
More filters
Journal ArticleDOI
TL;DR: A general introduction to biosensors and biosensing technologies is given, including a brief historical overview, introducing key developments in the field and illustrating the breadth of biomolecular sensing strategies and the expansion of nanotechnological approaches that are now available.
Abstract: Biosensors are nowadays ubiquitous in biomedical diagnosis as well as a wide range of other areas such as point-of-care monitoring of treatment and disease progression, environmental monitoring, food control, drug discovery, forensics and biomedical research. A wide range of techniques can be used for the development of biosensors. Their coupling with high-affinity biomolecules allows the sensitive and selective detection of a range of analytes. We give a general introduction to biosensors and biosensing technologies, including a brief historical overview, introducing key developments in the field and illustrating the breadth of biomolecular sensing strategies and the expansion of nanotechnological approaches that are now available.

782 citations

Journal ArticleDOI
TL;DR: Any comprehensive review of the membrane technology field written today would have to contain even more references than this one does; it is partly an overview, giving my opinions of what, among all the work done in this field over the past two centuries or so, is most relevant.

537 citations

Journal ArticleDOI
05 Feb 2021-Sensors
TL;DR: A biosensor is an integrated receptor-transducer device, which can convert a biological response into an electrical signal as mentioned in this paper, which can transform biological signals into electrochemical, electrical, optical, gravimetric, or acoustic signals.
Abstract: A biosensor is an integrated receptor-transducer device, which can convert a biological response into an electrical signal The design and development of biosensors have taken a center stage for researchers or scientists in the recent decade owing to the wide range of biosensor applications, such as health care and disease diagnosis, environmental monitoring, water and food quality monitoring, and drug delivery The main challenges involved in the biosensor progress are (i) the efficient capturing of biorecognition signals and the transformation of these signals into electrochemical, electrical, optical, gravimetric, or acoustic signals (transduction process), (ii) enhancing transducer performance ie, increasing sensitivity, shorter response time, reproducibility, and low detection limits even to detect individual molecules, and (iii) miniaturization of the biosensing devices using micro-and nano-fabrication technologies Those challenges can be met through the integration of sensing technology with nanomaterials, which range from zero- to three-dimensional, possessing a high surface-to-volume ratio, good conductivities, shock-bearing abilities, and color tunability Nanomaterials (NMs) employed in the fabrication and nanobiosensors include nanoparticles (NPs) (high stability and high carrier capacity), nanowires (NWs) and nanorods (NRs) (capable of high detection sensitivity), carbon nanotubes (CNTs) (large surface area, high electrical and thermal conductivity), and quantum dots (QDs) (color tunability) Furthermore, these nanomaterials can themselves act as transduction elements This review summarizes the evolution of biosensors, the types of biosensors based on their receptors, transducers, and modern approaches employed in biosensors using nanomaterials such as NPs (eg, noble metal NPs and metal oxide NPs), NWs, NRs, CNTs, QDs, and dendrimers and their recent advancement in biosensing technology with the expansion of nanotechnology

401 citations

Journal ArticleDOI
TL;DR: The market entry for a new venture is very difficult unless a niche product can be developed with a considerable market volume, and miniaturization must be feasible to allow automation for parallel sensing with ease of operation at a competitive cost.

387 citations

Journal ArticleDOI
TL;DR: Biosensors are of great significance because of their capability to resolve a potentially large number of analytical problems and challenges in very diverse areas such as defense, homeland security, agriculture and food safety, environmental monitoring, medicine, pharmacology, industry, etc.
Abstract: Biosensors are of great significance because of their capability to resolve a potentially large number of analytical problems and challenges in very diverse areas such as defense, homeland security, agriculture and food safety, environmental monitoring, medicine, pharmacology, industry, etc. The expanding role of biosensing in society and a real-world environment has led to an exponential growth of the RD significant problems with environmental monitoring; and of course serious challenges in security and military applications and agriculture/food safety. A review paper in the biosensor technology area may be structured based on (i) the principles of detection, such as the type of transducer platform, bioanalytical principles (affinity or kinetic), and biorecognition elements origin/properties (i.e. antibodies, enzymes, cells, aptamers, etc.), and (ii) the application area. This review follows the latter strategy and focuses on the applications. This allows discussion on how different sensing strategies are brought to bear on the same problem and highlights advantages/disadvantages of these sensing strategies. Given the broad range of biosensor related applications, several particularly relevant areas of application were selected for review: biological threat agents, chemical threat agents, and medicine.

359 citations