scispace - formally typeset
Search or ask a question
Author

Joseph Halim

Other affiliations: Drexel University
Bio: Joseph Halim is an academic researcher from Linköping University. The author has contributed to research in topics: MXenes & Carbide. The author has an hindex of 35, co-authored 66 publications receiving 7988 citations. Previous affiliations of Joseph Halim include Drexel University.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, two-dimensional transition metal carbides exhibit high gravimetric, volumetric, and areal capacitance values at high charcoefficients at high temperature.
Abstract: Pseudocapacitors based on redox-active materials have relatively high energy density but suffer from low power capability. Here the authors report that two-dimensional transition metal carbides exhibit high gravimetric, volumetric and areal capacitance values at high char…

1,477 citations

Journal ArticleDOI
TL;DR: New two-dimensional niobium and vanadium carbides have been synthesized by selective etching, at room temperature, of Al from Nb2 AlC and V2AlC, demonstrating good capability to handle high charge-discharge rates.
Abstract: New two-dimensional niobium and vanadium carbides have been synthesized by selective etching, at room temperature, of Al from Nb2AlC and V2AlC, respectively. These new matrials are promising electrode materials for Li-ion batteries, demonstrating good capability to handle high charge–discharge rates. Reversible capacities of 170 and 260 mA·h·g–1 at 1 C, and 110 and 125 mA·h·g–1 at 10 C were obtained for Nb2C and V2C-based electrodes, respectively.

1,444 citations

Journal ArticleDOI
TL;DR: This work reports on the fabrication of ∼1 × 1 cm2 Ti3C2 films by selective etching of Al, from sputter-deposited epitaxial Ti3AlC 2 films, in aqueous HF or NH4HF2, and opens the door for the use of MXenes in electronic, photonic, and sensing applications.
Abstract: Since the discovery of graphene, the quest for two-dimensional (2D) materials has intensified greatly. Recently, a new family of 2D transition metal carbides and carbonitrides (MXenes) was discovered that is both conducting and hydrophilic, an uncommon combination. To date MXenes have been produced as powders, flakes, and colloidal solutions. Herein, we report on the fabrication of ∼1 × 1 cm2 Ti3C2 films by selective etching of Al, from sputter-deposited epitaxial Ti3AlC2 films, in aqueous HF or NH4HF2. Films that were about 19 nm thick, etched with NH4HF2, transmit ∼90% of the light in the visible-to-infrared range and exhibit metallic conductivity down to ∼100 K. Below 100 K, the films’ resistivity increases with decreasing temperature and they exhibit negative magnetoresistance—both observations consistent with a weak localization phenomenon characteristic of many 2D defective solids. This advance opens the door for the use of MXenes in electronic, photonic, and sensing applications.

1,015 citations

Journal ArticleDOI
TL;DR: In this article, large scale synthesis and delamination of 2D Mo2CTx (where T is a surface termination group) has been achieved by selectively etching gallium from the recently discovered nanolaminated, ternary tra...
Abstract: Large scale synthesis and delamination of 2D Mo2CTx (where T is a surface termination group) has been achieved by selectively etching gallium from the recently discovered nanolaminated, ternary tra ...

829 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: More than twenty 2D carbides, nitrides and carbonitrides of transition metals (MXenes) have been synthesized and studied, and dozens more predicted to exist.
Abstract: The family of 2D transition metal carbides, carbonitrides and nitrides (collectively referred to as MXenes) has expanded rapidly since the discovery of Ti3C2 in 2011. The materials reported so far always have surface terminations, such as hydroxyl, oxygen or fluorine, which impart hydrophilicity to their surfaces. About 20 different MXenes have been synthesized, and the structures and properties of dozens more have been theoretically predicted. The availability of solid solutions, the control of surface terminations and a recent discovery of multi-transition-metal layered MXenes offer the potential for synthesis of many new structures. The versatile chemistry of MXenes allows the tuning of properties for applications including energy storage, electromagnetic interference shielding, reinforcement for composites, water purification, gas- and biosensors, lubrication, and photo-, electro- and chemical catalysis. Attractive electronic, optical, plasmonic and thermoelectric properties have also been shown. In this Review, we present the synthesis, structure and properties of MXenes, as well as their energy storage and related applications, and an outlook for future research. More than twenty 2D carbides, nitrides and carbonitrides of transition metals (MXenes) have been synthesized and studied, and dozens more predicted to exist. Highly electrically conductive MXenes show promise in electrical energy storage, electromagnetic interference shielding, electrocatalysis, plasmonics and other applications.

4,745 citations

Journal ArticleDOI
TL;DR: In this article, a new family of two-dimensional early transition metal carbides and carbonitrides, called MXenes, was discovered and a detailed outlook for future research on MXenes is also presented.
Abstract: Recently a new, large family of two-dimensional (2D) early transition metal carbides and carbonitrides, called MXenes, was discovered. MXenes are produced by selective etching of the A element from the MAX phases, which are metallically conductive, layered solids connected by strong metallic, ionic, and covalent bonds, such as Ti2AlC, Ti3AlC2, and Ta4AlC3. MXenes ­combine the metallic conductivity of transition metal carbides with the hydrophilic nature of their hydroxyl or oxygen terminated surfaces. In essence, they behave as “conductive clays”. This article reviews progress—both ­experimental and theoretical—on their synthesis, structure, properties, intercalation, delamination, and potential applications. MXenes are expected to be good candidates for a host of applications. They have already shown promising performance in electrochemical energy storage systems. A detailed outlook for future research on MXenes is also presented.

3,973 citations

Journal ArticleDOI
04 Dec 2014-Nature
TL;DR: This capacitance report reports a method of producing two-dimensional titanium carbide ‘clay’ using a solution of lithium fluoride and hydrochloric acid that offers a much faster route to film production as well as the avoidance of handling hazardous concentrated hydrofluoric acid.
Abstract: Safe and powerful energy storage devices are becoming increasingly important. Charging times of seconds to minutes, with power densities exceeding those of batteries, can in principle be provided by electrochemical capacitors--in particular, pseudocapacitors. Recent research has focused mainly on improving the gravimetric performance of the electrodes of such systems, but for portable electronics and vehicles volume is at a premium. The best volumetric capacitances of carbon-based electrodes are around 300 farads per cubic centimetre; hydrated ruthenium oxide can reach capacitances of 1,000 to 1,500 farads per cubic centimetre with great cyclability, but only in thin films. Recently, electrodes made of two-dimensional titanium carbide (Ti3C2, a member of the 'MXene' family), produced by etching aluminium from titanium aluminium carbide (Ti3AlC2, a 'MAX' phase) in concentrated hydrofluoric acid, have been shown to have volumetric capacitances of over 300 farads per cubic centimetre. Here we report a method of producing this material using a solution of lithium fluoride and hydrochloric acid. The resulting hydrophilic material swells in volume when hydrated, and can be shaped like clay and dried into a highly conductive solid or rolled into films tens of micrometres thick. Additive-free films of this titanium carbide 'clay' have volumetric capacitances of up to 900 farads per cubic centimetre, with excellent cyclability and rate performances. This capacitance is almost twice that of our previous report, and our synthetic method also offers a much faster route to film production as well as the avoidance of handling hazardous concentrated hydrofluoric acid.

3,783 citations