scispace - formally typeset
Search or ask a question
Author

Joseph J. Michalsky

Bio: Joseph J. Michalsky is an academic researcher from State University of New York System. The author has contributed to research in topics: Circular polarization & Irradiance. The author has an hindex of 29, co-authored 83 publications receiving 6142 citations. Previous affiliations of Joseph J. Michalsky include University at Albany, SUNY & Battelle Memorial Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present the latest versions of several models developed by the authors to predict short time-step solar energy and daylight availability quantities needed by energy system modelers or building designers.

1,638 citations

Journal ArticleDOI
TL;DR: In this article, the mean instantaneous sky luminance angular distribution pattern for all sky conditions from overcast to clear, through partly cloudy, skies is described. But the model is not suitable for the case of clouds.

813 citations

Journal ArticleDOI
28 Mar 2003-Science
TL;DR: It is found that the aerosol-induced increase in diffuse radiation by the volcano enhanced the terrestrial carbon sink and contributed to the temporary decline in the growth rate of atmospheric carbon dioxide after the eruption.
Abstract: Volcanic aerosols from the 1991 Mount Pinatubo eruption greatly increased diffuse radiation worldwide for the following 2 years. We estimated that this increase in diffuse radiation alone enhanced noontime photosynthesis of a deciduous forest by 23% in 1992 and 8% in 1993 under cloudless conditions. This finding indicates that the aerosol-induced increase in diffuse radiation by the volcano enhanced the terrestrial carbon sink and contributed to the temporary decline in the growth rate of atmospheric carbon dioxide after the eruption.

584 citations

Journal ArticleDOI
TL;DR: The multifilter rotating shadow-band radiometer is a ground-based instrument that uses independent interference-filter-photodiode detectors and the automated rotatingshadow-band technique to make spectrally resolved measurements at seven wavelength passbands of direct-normal, total-hor horizontal, and diffuse-horizontal spectral irradiances.
Abstract: The multifilter rotating shadow-band radiometer is a ground-based instrument that uses independent interference-filter-photodiode detectors and the automated rotating shadow-band technique to make spectrally resolved measurements at seven wavelength passbands (chosen at the time of manufacture between 350 nm and 1.7 µm) of direct-normal, total-horizontal, and diffuse-horizontal irradiances. This instrument achieves an accuracy in direct-normal spectral irradiance comparable with that of tracking radiometers, and it is more accurate than conventional instruments for the determination of the diffuse and total-horizontal spectral irradiances because the angular acceptance function of the instrument closely approximates the ideal cosine response, and because the measured direct-normal component can be corrected for the remaining angular acceptance error. The three irradiance components are measured with the same detector for a given wavelength. Together with the automated shadow-band technique, this guarantees hat the calibration coefficients are identical for each, thus reducing errors when one compares them (as opposed to measurements made with independent instruments). One can use the direct-normal component observations for Langley analysis to obtain depths and to provide an ongoing calibration against the solar constant by extrapolation to zero air mass. Thus the long-term stability of all three measured components can be tied to the solar constant by an analysis of the routinely collected data.

493 citations

Journal ArticleDOI
TL;DR: In this paper, an algorithm for the calculation of solar position that has a stated, and partially demonstrated, accuracy of 0.01 deg until the year 2050 is presented, using the same approach as an earlier paper by Walraven, but has a more simplified form.

417 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The operation and philosophy of the monitoring system, the precision and accuracy of the measuring radiometers, a brief description of the processing system, and access to the database are discussed.

6,535 citations

Journal ArticleDOI
13 Jun 2008-Science
TL;DR: Interdisciplinary science that integrates knowledge of the many interacting climate services of forests with the impacts of global change is necessary to identify and understand as yet unexplored feedbacks in the Earth system and the potential of forests to mitigate climate change.
Abstract: The world's forests influence climate through physical, chemical, and biological processes that affect planetary energetics, the hydrologic cycle, and atmospheric composition. These complex and nonlinear forest-atmosphere interactions can dampen or amplify anthropogenic climate change. Tropical, temperate, and boreal reforestation and afforestation attenuate global warming through carbon sequestration. Biogeophysical feedbacks can enhance or diminish this negative climate forcing. Tropical forests mitigate warming through evaporative cooling, but the low albedo of boreal forests is a positive climate forcing. The evaporative effect of temperate forests is unclear. The net climate forcing from these and other processes is not known. Forests are under tremendous pressure from global change. Interdisciplinary science that integrates knowledge of the many interacting climate services of forests with the impacts of global change is necessary to identify and understand as yet unexplored feedbacks in the Earth system and the potential of forests to mitigate climate change.

4,541 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a synthesis of past research on the role of soil moisture for the climate system, based both on modelling and observational studies, focusing on soil moisture-temperature and soil moistureprecipitation feedbacks, and their possible modifications with climate change.

3,402 citations

Journal ArticleDOI
TL;DR: In this article, the AER line-by-line (LBL) models were compared with the RTMIP line-By-line results in the longwave and shortwave for clear sky scenarios previously examined by the radiative transfer model intercomparison project.
Abstract: A primary component of the observed, recent climate change is the radiative forcing from increased concentrations of long-lived greenhouse gases (LLGHGs). Effective simulation of anthropogenic climate change by general circulation models (GCMs) is strongly dependent on the accurate representation of radiative processes associated with water vapor, ozone and LLGHGs. In the context of the increasing application of the Atmospheric and Environmental Research, Inc. (AER) radiation models within the GCM community, their capability to calculate longwave and shortwave radiative forcing for clear sky scenarios previously examined by the radiative transfer model intercomparison project (RTMIP) is presented. Forcing calculations with the AER line-by-line (LBL) models are very consistent with the RTMIP line-by-line results in the longwave and shortwave. The AER broadband models, in all but one case, calculate longwave forcings within a range of -0.20 to 0.23 W m{sup -2} of LBL calculations and shortwave forcings within a range of -0.16 to 0.38 W m{sup -2} of LBL results. These models also perform well at the surface, which RTMIP identified as a level at which GCM radiation models have particular difficulty reproducing LBL fluxes. Heating profile perturbations calculated by the broadband models generally reproduce high-resolution calculations within a few hundredths K d{sup -1} in the troposphere and within 0.15 K d{sup -1} in the peak stratospheric heating near 1 hPa. In most cases, the AER broadband models provide radiative forcing results that are in closer agreement with high 20 resolution calculations than the GCM radiation codes examined by RTMIP, which supports the application of the AER models to climate change research.

3,344 citations

Journal ArticleDOI
06 Jun 2003-Science
TL;DR: It is indicated that global changes in climate have eased several critical climatic constraints to plant growth, such that net primary production increased 6% (3.4 petagrams of carbon over 18 years) globally.
Abstract: Recent climatic changes have enhanced plant growth in northern mid-latitudes and high latitudes. However, a comprehensive analysis of the impact of global climatic changes on vegetation productivity has not before been expressed in the context of variable limiting factors to plant growth. We present a global investigation of vegetation responses to climatic changes by analyzing 18 years (1982 to 1999) of both climatic data and satellite observations of vegetation activity. Our results indicate that global changes in climate have eased several critical climatic constraints to plant growth, such that net primary production increased 6% (3.4 petagrams of carbon over 18 years) globally. The largest increase was in tropical ecosystems. Amazon rain forests accounted for 42% of the global increase in net primary production, owing mainly to decreased cloud cover and the resulting increase in solar radiation.

3,126 citations