scispace - formally typeset
Search or ask a question
Author

Joseph John Sumakeris

Bio: Joseph John Sumakeris is an academic researcher from Cree Inc.. The author has contributed to research in topics: Silicon carbide & Epitaxy. The author has an hindex of 29, co-authored 86 publications receiving 2288 citations.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, it was shown that Z1∕Z2 alone controls the low-injection minority carrier lifetime in 4H-SiC p-i-n diodes under forward bias.
Abstract: Low-injection minority carrier lifetimes (MCLs) and deep trap spectra have been investigated in n− 4H-SiC epilayers of varying layer thicknesses, in order to enable the separation of bulk lifetimes from surface recombination effects. From the linear dependence of the inverse bulk MCL on the concentration of Z1∕Z2 defects and from the behavior of the deep trap spectra in 4H-SiC p-i-n diodes under forward bias, we conclude that it is Z1∕Z2 alone that controls the MCL in this material.

182 citations

Patent
22 Jun 2006
TL;DR: In this paper, an epitaxial silicon carbide layer is fabricated by forming first features in a surface of a substrate having an off-axis orientation toward a crystallographic direction.
Abstract: An epitaxial silicon carbide layer is fabricated by forming first features in a surface of a silicon carbide substrate having an off-axis orientation toward a crystallographic direction. The first features include at least one sidewall that is orientated nonparallel (i.e., oblique or perpendicular) to the crystallographic direction. A first epitaxial silicon carbide layer is then grown on the surface of the silicon carbide substrate that includes first features therein. Second features are then formed in the first epitaxial layer. The second features include at least one sidewall that is oriented nonparallel to the crystallographic direction. A second epitaxial silicon carbide layer is then grown on the surface of the first epitaxial silicon carbide layer that includes the second features therein.

138 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a procedure to reduce the density of Vf drift inducing BPDs in epilayers of bipolar SiC devices by reducing the number of Shockley Stacking Faults (SFs).
Abstract: Forward voltage instability, or Vf drift, has confounded high voltage SiC device makers for the last several years. The SiC community has recognized that the root cause of Vf drift in bipolar SiC devices is the expansion of basal plane dislocations (BPDs) into Shockley Stacking Faults (SFs) within device regions that experience conductivity modulation. In this presentation, we detail relatively simple procedures that reduce the density of Vf drift inducing BPDs in epilayers to

98 citations

Patent
16 Apr 2003
TL;DR: In this paper, a method for controlling parasitic deposits in a deposition system for depositing a film on a substrate, the deposition system defining a reaction chamber for receiving the substrate and including a process gas in the reaction chamber, includes flowing a buffer gas between the interior surface and at least a portion of the process gas to form a gas barrier layer.
Abstract: A method for controlling parasitic deposits in a deposition system for depositing a film on a substrate, the deposition system defining a reaction chamber for receiving the substrate and including a process gas in the reaction chamber and an interior surface contiguous with the reaction chamber, includes flowing a buffer gas between the interior surface and at least a portion of the process gas to form a gas barrier layer such that the gas barrier layer inhibits contact between the interior surface and components of the process gas.

98 citations

Proceedings ArticleDOI
02 Jun 2002
TL;DR: Very high power densities have been shown for both SiC MESFET and GaN HEMT devices as discussed by the authors, along with good efficiency and linearity, provide an excellent base for future military and commercial power amplifier applications.
Abstract: Very high power densities have been shown for both SiC MESFET and GaN HEMT devices. Both of these active devices benefit from the high breakdown voltages afforded by their wide-bandgap semiconductor properties. The GaN device also benefits from current densities as high as 1 A/mm. This high power density, along with good efficiency and linearity, provide an excellent base for future military and commercial power amplifier applications. High power densities are possible using narrow band power-matching networks. Although the gain-bandwidth limitation is exacerbated due to the high-impedance load lines required, high power design is possible even over multi-octave bandwidths.

86 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a review of recent progresses in the development of SiC- and GaN-based power semiconductor devices together with an overall view of the state of the art of this new device generation is presented.
Abstract: Wide bandgap semiconductors show superior material properties enabling potential power device operation at higher temperatures, voltages, and switching speeds than current Si technology. As a result, a new generation of power devices is being developed for power converter applications in which traditional Si power devices show limited operation. The use of these new power semiconductor devices will allow both an important improvement in the performance of existing power converters and the development of new power converters, accounting for an increase in the efficiency of the electric energy transformations and a more rational use of the electric energy. At present, SiC and GaN are the more promising semiconductor materials for these new power devices as a consequence of their outstanding properties, commercial availability of starting material, and maturity of their technological processes. This paper presents a review of recent progresses in the development of SiC- and GaN-based power semiconductor devices together with an overall view of the state of the art of this new device generation.

1,648 citations

Journal ArticleDOI
TL;DR: The technology progress of SiC power devices and their emerging applications are reviewed and the design challenges and future trends are summarized.
Abstract: Silicon carbide (SiC) power devices have been investigated extensively in the past two decades, and there are many devices commercially available now. Owing to the intrinsic material advantages of SiC over silicon (Si), SiC power devices can operate at higher voltage, higher switching frequency, and higher temperature. This paper reviews the technology progress of SiC power devices and their emerging applications. The design challenges and future trends are summarized at the end of the paper.

806 citations

Journal ArticleDOI
TL;DR: In this article, the features and present status of SiC power devices are briefly described, and several important aspects of the material science and device physics of the SiC, such as impurity doping, extended and point defects, and the impact of such defects on device performance and reliability, are reviewed.
Abstract: Power semiconductor devices are key components in power conversion systems. Silicon carbide (SiC) has received increasing attention as a wide-bandgap semiconductor suitable for high-voltage and low-loss power devices. Through recent progress in the crystal growth and process technology of SiC, the production of medium-voltage (600?1700 V) SiC Schottky barrier diodes (SBDs) and power metal?oxide?semiconductor field-effect transistors (MOSFETs) has started. However, basic understanding of the material properties, defect electronics, and the reliability of SiC devices is still poor. In this review paper, the features and present status of SiC power devices are briefly described. Then, several important aspects of the material science and device physics of SiC, such as impurity doping, extended and point defects, and the impact of such defects on device performance and reliability, are reviewed. Fundamental issues regarding SiC SBDs and power MOSFETs are also discussed.

750 citations

Patent
16 Feb 2005
TL;DR: In this article, a bypass pipe is connected between the mechanical booster pump and the rest vacuum pumps located at a downstream side of the booster pump to prevent the exhaust gas from diffusing back to the inside of a process chamber.
Abstract: Process gas discharged from a bypass pipe to a gas exhaust system can be prevented from diffusing back to the inside of a process chamber without having to install a dedicated vacuum pump at the downstream side of the bypass pipe. The substrate processing apparatus includes a process chamber accommodating a substrate, a gas supply system supplying process gas from a process gas source to the process chamber for processing the substrate, a gas exhaust system configured to exhaust the process chamber, two or more vacuum pumps installed in series at the gas exhaust system, and a bypass pipe connected between the gas supply system and the gas exhaust system. The most upstream one of the vacuum pumps is a mechanical booster pump, and the bypass pipe is connected between the mechanical booster pump and the rest vacuum pumps located at a downstream side of the mechanical booster pump.

644 citations

Patent
08 Jan 1998
TL;DR: In this paper, the super lattice structure of a light emitting device (LED) was proposed to make working current and voltage of the device lower, resulting in realization of more efficient devices.
Abstract: A nitride semiconductor device including a light emitting device comprises a n-type region of one or more nitride semiconductor layers having n-type conductivity, a p-type region of one or more nitride semiconductor layers having p-type conductivity and an active layer between the n-type region and the p-type region. In such devices, there is provided with a super lattice layer comprising first layers and second layers which are nitride semiconductors having a different composition respectively. The super lattice structure makes working current and voltage of the device lowered, resulting in realization of more efficient devices.

627 citations