scispace - formally typeset
Search or ask a question
Author

Joseph M. Kahn

Bio: Joseph M. Kahn is an academic researcher from Stanford University. The author has contributed to research in topics: Multi-mode optical fiber & Multiplexing. The author has an hindex of 66, co-authored 360 publications receiving 26273 citations. Previous affiliations of Joseph M. Kahn include University of California, Los Angeles & Tokyo University of Science.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a unified multiblock nonlinear model for the joint compensation of the impairments in fiber transmission is presented, and it is shown that commonly used techniques for overcoming different impairments are often based on the same principles such as feedback and feedforward control, and time-versus-frequency-domain representations.
Abstract: Next-generation optical fiber systems will employ coherent detection to improve power and spectral efficiency, and to facilitate flexible impairment compensation using digital signal processors (DSPs). In a fully digital coherent system, the electric fields at the input and the output of the channel are available to DSPs at the transmitter and the receiver, enabling the use of arbitrary impairment precompensation and postcompensation algorithms. Linear time-invariant (LTI) impairments such as chromatic dispersion and polarization-mode dispersion can be compensated by adaptive linear equalizers. Non-LTI impairments, such as laser phase noise and Kerr nonlinearity, can be compensated by channel inversion. All existing impairment compensation techniques ultimately approximate channel inversion for a subset of the channel effects. We provide a unified multiblock nonlinear model for the joint compensation of the impairments in fiber transmission. We show that commonly used techniques for overcoming different impairments, despite their different appearance, are often based on the same principles such as feedback and feedforward control, and time-versus-frequency-domain representations. We highlight equivalences between techniques, and show that the choice of algorithm depends on making tradeoffs.

207 citations

Proceedings ArticleDOI
08 Nov 1998
TL;DR: The capacities of multiple-element antenna arrays (MEAs) in a more realistic propagation environment simulated via the WiSE ray-tracing tool and predicts very closely the slopes observed for simulated channels, even for moderate n.
Abstract: Previous studies have shown that a wireless system using n transmitting and n receiving antennas can achieve a capacity n times higher than a single-antenna system in an independent Rayleigh fading environment. We explore the capacities of multiple-element antenna arrays (MEAs) in a more realistic propagation environment simulated via the WiSE ray-tracing tool. We impose an average power constraint and collect statistics of the capacity with optimal power allocation, C/sub wf/, and the mutual information with an equal power allocation, I/sub eq/. In addition, we present expressions for the asymptotic growth rates C/sub wf//n and I/sub eq//n as n/spl rarr//spl infin/ for two cases: (a) independent fadings and (b) correlated fadings at different antennas. We find that C/sub wf//n and I/sub eq//n converge to constants C/sub wf/* and I/sub eq/*, respectively in case (a), and to C/sub wf//sup 0/and I/sub eq//sup 0/ in case (b). We observe that C/sub wf//sup 0/ and I/sub eq//sup 0/ predict very closely the slopes observed for simulated channels, even for moderate n (i.e., 16).

202 citations

Journal ArticleDOI
TL;DR: Two modifications to the design of wireless infrared links are discussed that can yield significant performance improvements, albeit at the price of increased complexity, and may enable infrared wireless networks to employ space-division multiplexing.
Abstract: We discuss two modifications to the design of wireless infrared links that can yield significant performance improvements, albeit at the price of increased complexity. In line-of-sight and non-line-of-sight links, replacement of a single-element receiver by one employing an imaging light concentrator and a segmented photodetector can reduce received ambient light noise and multipath distortion. For a fixed receiver entrance area, such an imaging receiver can reduce transmit power requirements by as much as about 14 dB, depending on the link design and the number of photodetector segments. Imaging receivers also reduce co-channel interference, and may therefore enable infrared wireless networks to employ space-division multiplexing, wherein several transmitters located in close proximity can transmit simultaneously at the same wavelength. In nondirected non-line-of-sight links, replacement of the diffuse transmitter by one that projects multiple narrow beams can reduce the path loss, further reducing the transmit power requirement by several decibels. We describe the design of an experimental 100 Mb/s infrared wireless link employing a multibeam transmitter and a 37-pixel imaging receiver.

188 citations

Journal ArticleDOI
TL;DR: In this paper, the authors developed a field-coupling model for propagation in graded-index MMF, analogous to the principal-state model for polarization-mode dispersion in single-mode fiber.
Abstract: Power-coupling models are inherently unable to describe certain mode coupling effects in multimode fiber (MMF) when using coherent sources at high bit rates, such as polarization dependence of the impulse response. We develop a field-coupling model for propagation in graded-index MMF, analogous to the principal-states model for polarization-mode dispersion in single-mode fiber. Our model allows computation of the fiber impulse response, given a launched electric-field profile and polarization. In order to model both spatial- and polarization-mode coupling, we divide a MMF into numerous short sections, each having random curvature and random angular orientation. The model can be described using only a few parameters, including fiber length, number of sections, and curvature variance. For each random realization of a MMF, we compute a propagation matrix, the principal modes (PMs), and corresponding group delays (GDs). When the curvature variance and fiber length are small (low-coupling regime), the GDs are close to their uncoupled values, and scale linearly with fiber length, while the PMs remain highly polarized. In this regime, our model reproduces the polarization dependence of the impulse response that is observed in silica MMF. When the curvature variance and fiber length are sufficiently large (high-coupling regime), the GD spread is reduced, and the GDs scale with the square root of the fiber length, while the PMs become depolarized. In this regime, our model is consistent with the reduced GD spread observed in plastic MMF.

180 citations

Journal ArticleDOI
TL;DR: It is shown that principal modes are generally different from eigenmodes, even in uniform waveguides, unlike the special case of a single-mode fiber with uniform birefringence, and may provide a new basis for analysis and control of dispersion in multimode fiber systems.
Abstract: We generalize the concept of principal states of polarization and prove the existence of principal modes in multimode waveguides. Principal modes do not suffer from modal dispersion to first order of frequency variation and form orthogonal bases at both the input and the output ends of the waveguide. We show that principal modes are generally different from eigenmodes, even in uniform waveguides, unlike the special case of a single-mode fiber with uniform birefringence. The difference is most pronounced when different eigenmodes possess similar group velocities and when their field patterns vary as a function of frequency. This work may provide a new basis for analysis and control of dispersion in multimode fiber systems.

177 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The concept of sensor networks which has been made viable by the convergence of micro-electro-mechanical systems technology, wireless communications and digital electronics is described.

17,936 citations

Journal ArticleDOI
TL;DR: The current state of the art of sensor networks is captured in this article, where solutions are discussed under their related protocol stack layer sections.
Abstract: The advancement in wireless communications and electronics has enabled the development of low-cost sensor networks. The sensor networks can be used for various application areas (e.g., health, military, home). For different application areas, there are different technical issues that researchers are currently resolving. The current state of the art of sensor networks is captured in this article, where solutions are discussed under their related protocol stack layer sections. This article also points out the open research issues and intends to spark new interests and developments in this field.

14,048 citations

Book
01 Jan 2005

9,038 citations

Proceedings Article
01 Jan 2005
TL;DR: This book aims to provide a chronology of key events and individuals involved in the development of microelectronics technology over the past 50 years and some of the individuals involved have been identified and named.
Abstract: Alhussein Abouzeid Rensselaer Polytechnic Institute Raviraj Adve University of Toronto Dharma Agrawal University of Cincinnati Walid Ahmed Tyco M/A-COM Sonia Aissa University of Quebec, INRSEMT Huseyin Arslan University of South Florida Nallanathan Arumugam National University of Singapore Saewoong Bahk Seoul National University Claus Bauer Dolby Laboratories Brahim Bensaou Hong Kong University of Science and Technology Rick Blum Lehigh University Michael Buehrer Virginia Tech Antonio Capone Politecnico di Milano Javier Gómez Castellanos National University of Mexico Claude Castelluccia INRIA Henry Chan The Hong Kong Polytechnic University Ajit Chaturvedi Indian Institute of Technology Kanpur Jyh-Cheng Chen National Tsing Hua University Yong Huat Chew Institute for Infocomm Research Tricia Chigan Michigan Tech Dong-Ho Cho Korea Advanced Institute of Science and Tech. Jinho Choi University of New South Wales Carlos Cordeiro Philips Research USA Laurie Cuthbert Queen Mary University of London Arek Dadej University of South Australia Sajal Das University of Texas at Arlington Franco Davoli DIST University of Genoa Xiaodai Dong, University of Alberta Hassan El-sallabi Helsinki University of Technology Ozgur Ercetin Sabanci University Elza Erkip Polytechnic University Romano Fantacci University of Florence Frank Fitzek Aalborg University Mario Freire University of Beira Interior Vincent Gaudet University of Alberta Jairo Gutierrez University of Auckland Michael Hadjitheodosiou University of Maryland Zhu Han University of Maryland College Park Christian Hartmann Technische Universitat Munchen Hossam Hassanein Queen's University Soong Boon Hee Nanyang Technological University Paul Ho Simon Fraser University Antonio Iera University "Mediterranea" of Reggio Calabria Markku Juntti University of Oulu Stefan Kaiser DoCoMo Euro-Labs Nei Kato Tohoku University Dongkyun Kim Kyungpook National University Ryuji Kohno Yokohama National University Bhaskar Krishnamachari University of Southern California Giridhar Krishnamurthy Indian Institute of Technology Madras Lutz Lampe University of British Columbia Bjorn Landfeldt The University of Sydney Peter Langendoerfer IHP Microelectronics Technologies Eddie Law Ryerson University in Toronto

7,826 citations

Proceedings ArticleDOI
01 Aug 2000
TL;DR: Greedy Perimeter Stateless Routing is presented, a novel routing protocol for wireless datagram networks that uses the positions of routers and a packet's destination to make packet forwarding decisions and its scalability on densely deployed wireless networks is demonstrated.
Abstract: We present Greedy Perimeter Stateless Routing (GPSR), a novel routing protocol for wireless datagram networks that uses the positions of routers and a packet's destination to make packet forwarding decisions. GPSR makes greedy forwarding decisions using only information about a router's immediate neighbors in the network topology. When a packet reaches a region where greedy forwarding is impossible, the algorithm recovers by routing around the perimeter of the region. By keeping state only about the local topology, GPSR scales better in per-router state than shortest-path and ad-hoc routing protocols as the number of network destinations increases. Under mobility's frequent topology changes, GPSR can use local topology information to find correct new routes quickly. We describe the GPSR protocol, and use extensive simulation of mobile wireless networks to compare its performance with that of Dynamic Source Routing. Our simulations demonstrate GPSR's scalability on densely deployed wireless networks.

7,384 citations