scispace - formally typeset
Search or ask a question
Author

Joseph Piven

Bio: Joseph Piven is an academic researcher from University of North Carolina at Chapel Hill. The author has contributed to research in topics: Autism & Autism spectrum disorder. The author has an hindex of 90, co-authored 229 publications receiving 37920 citations. Previous affiliations of Joseph Piven include McGill University & French Institute of Health and Medical Research.


Papers
More filters
Journal ArticleDOI
TL;DR: The methods and software engineering philosophy behind this new tool, ITK-SNAP, are described and the results of validation experiments performed in the context of an ongoing child autism neuroimaging study are provided, finding that SNAP is a highly reliable and efficient alternative to manual tracing.

6,669 citations

Journal ArticleDOI
S. Hong Lee1, Stephan Ripke2, Stephan Ripke3, Benjamin M. Neale2  +402 moreInstitutions (124)
TL;DR: Empirical evidence of shared genetic etiology for psychiatric disorders can inform nosology and encourages the investigation of common pathophysiologies for related disorders.
Abstract: Most psychiatric disorders are moderately to highly heritable. The degree to which genetic variation is unique to individual disorders or shared across disorders is unclear. To examine shared genetic etiology, we use genome-wide genotype data from the Psychiatric Genomics Consortium (PGC) for cases and controls in schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD). We apply univariate and bivariate methods for the estimation of genetic variation within and covariation between disorders. SNPs explained 17-29% of the variance in liability. The genetic correlation calculated using common SNPs was high between schizophrenia and bipolar disorder (0.68 ± 0.04 s.e.), moderate between schizophrenia and major depressive disorder (0.43 ± 0.06 s.e.), bipolar disorder and major depressive disorder (0.47 ± 0.06 s.e.), and ADHD and major depressive disorder (0.32 ± 0.07 s.e.), low between schizophrenia and ASD (0.16 ± 0.06 s.e.) and non-significant for other pairs of disorders as well as between psychiatric disorders and the negative control of Crohn's disease. This empirical evidence of shared genetic etiology for psychiatric disorders can inform nosology and encourages the investigation of common pathophysiologies for related disorders.

2,058 citations

Journal ArticleDOI
Dalila Pinto1, Alistair T. Pagnamenta2, Lambertus Klei3, Richard Anney4  +178 moreInstitutions (46)
15 Jul 2010-Nature
TL;DR: The genome-wide characteristics of rare (<1% frequency) copy number variation in ASD are analysed using dense genotyping arrays to reveal many new genetic and functional targets in ASD that may lead to final connected pathways.
Abstract: The autism spectrum disorders (ASDs) are a group of conditions characterized by impairments in reciprocal social interaction and communication, and the presence of restricted and repetitive behaviours. Individuals with an ASD vary greatly in cognitive development, which can range from above average to intellectual disability. Although ASDs are known to be highly heritable ( approximately 90%), the underlying genetic determinants are still largely unknown. Here we analysed the genome-wide characteristics of rare (<1% frequency) copy number variation in ASD using dense genotyping arrays. When comparing 996 ASD individuals of European ancestry to 1,287 matched controls, cases were found to carry a higher global burden of rare, genic copy number variants (CNVs) (1.19 fold, P = 0.012), especially so for loci previously implicated in either ASD and/or intellectual disability (1.69 fold, P = 3.4 x 10(-4)). Among the CNVs there were numerous de novo and inherited events, sometimes in combination in a given family, implicating many novel ASD genes such as SHANK2, SYNGAP1, DLGAP2 and the X-linked DDX53-PTCHD1 locus. We also discovered an enrichment of CNVs disrupting functional gene sets involved in cellular proliferation, projection and motility, and GTPase/Ras signalling. Our results reveal many new genetic and functional targets in ASD that may lead to final connected pathways.

1,919 citations

Journal ArticleDOI
Peter Szatmari1, Andrew D. Paterson2, Lonnie Zwaigenbaum1, Wendy Roberts2, Jessica Brian2, Xiao-Qing Liu2, John B. Vincent2, Jennifer Skaug2, Ann P. Thompson1, Lili Senman2, Lars Feuk2, Cheng Qian2, Susan E. Bryson3, Marshall B. Jones4, Christian R. Marshall2, Stephen W. Scherer2, Veronica J. Vieland5, Christopher W. Bartlett5, La Vonne Mangin5, Rhinda Goedken6, Alberto M. Segre6, Margaret A. Pericak-Vance7, Michael L. Cuccaro7, John R. Gilbert7, Harry H. Wright8, Ruth K. Abramson8, Catalina Betancur9, Thomas Bourgeron10, Christopher Gillberg11, Marion Leboyer9, Joseph D. Buxbaum12, Kenneth L. Davis12, Eric Hollander12, Jeremy M. Silverman12, Joachim Hallmayer13, Linda Lotspeich13, James S. Sutcliffe14, Jonathan L. Haines14, Susan E. Folstein15, Joseph Piven16, Thomas H. Wassink6, Val C. Sheffield6, Daniel H. Geschwind17, Maja Bucan18, W. Ted Brown, Rita M. Cantor17, John N. Constantino19, T. Conrad Gilliam20, Martha R. Herbert21, Clara Lajonchere17, David H. Ledbetter22, Christa Lese-Martin22, Janet Miller17, Stan F. Nelson17, Carol A. Samango-Sprouse23, Sarah J. Spence17, Matthew W. State24, Rudolph E. Tanzi21, Hilary Coon25, Geraldine Dawson26, Bernie Devlin27, Annette Estes26, Pamela Flodman28, Lambertus Klei27, William M. McMahon25, Nancy J. Minshew27, Jeff Munson26, Elena Korvatska26, Elena Korvatska29, Patricia M. Rodier30, Gerard D. Schellenberg29, Gerard D. Schellenberg26, Moyra Smith28, M. Anne Spence28, Christopher J. Stodgell30, Ping Guo Tepper, Ellen M. Wijsman26, Chang En Yu26, Chang En Yu29, Bernadette Rogé31, Carine Mantoulan31, Kerstin Wittemeyer31, Annemarie Poustka32, Bärbel Felder32, Sabine M. Klauck32, Claudia Schuster32, Fritz Poustka33, Sven Bölte33, Sabine Feineis-Matthews33, Evelyn Herbrecht33, Gabi Schmötzer33, John Tsiantis34, Katerina Papanikolaou34, Elena Maestrini35, Elena Bacchelli35, Francesca Blasi35, Simona Carone35, Claudio Toma35, Herman van Engeland36, Maretha de Jonge36, Chantal Kemner36, Frederike Koop36, Marjolijn Langemeijer36, Channa Hijimans36, Wouter G. Staal36, Gillian Baird37, Patrick Bolton38, Michael Rutter38, Emma Weisblatt39, Jonathan Green40, Catherine Aldred40, Julie Anne Wilkinson40, Andrew Pickles40, Ann Le Couteur41, Tom Berney41, Helen McConachie41, Anthony J. Bailey42, Kostas Francis42, Gemma Honeyman42, Aislinn Hutchinson42, Jeremy R. Parr42, Simon Wallace42, Anthony P. Monaco42, Gabrielle Barnby42, Kazuhiro Kobayashi42, Janine A. Lamb42, Inês Sousa42, Nuala Sykes42, Edwin H. Cook43, Stephen J. Guter43, Bennett L. Leventhal43, Jeff Salt43, Catherine Lord44, Christina Corsello44, Vanessa Hus44, Daniel E. Weeks27, Fred R. Volkmar24, Maïté Tauber45, Eric Fombonne46, Andy Shih47 
TL;DR: Linkage and copy number variation analyses implicate chromosome 11p12–p13 and neurexins, respectively, among other candidate loci, highlighting glutamate-related genes as promising candidates for contributing to ASDs.
Abstract: Autism spectrum disorders (ASDs) are common, heritable neurodevelopmental conditions. The genetic architecture of ASDs is complex, requiring large samples to overcome heterogeneity. Here we broaden coverage and sample size relative to other studies of ASDs by using Affymetrix 10K SNP arrays and 1,181 [corrected] families with at least two affected individuals, performing the largest linkage scan to date while also analyzing copy number variation in these families. Linkage and copy number variation analyses implicate chromosome 11p12-p13 and neurexins, respectively, among other candidate loci. Neurexins team with previously implicated neuroligins for glutamatergic synaptogenesis, highlighting glutamate-related genes as promising candidates for contributing to ASDs.

1,338 citations

Journal ArticleDOI
28 May 2009-Nature
TL;DR: Several new susceptibility genes encoding neuronal cell-adhesion molecules, including NLGN1 and ASTN2, were enriched with CNVs in ASD cases compared to controls, and duplications 55 kilobases upstream of complementary DNA AK123120 indicate that these two important gene networks expressed within the central nervous system may contribute to the genetic susceptibility of ASD.
Abstract: Several lines of evidence point to genetic involvement in autism spectrum disorders (ASDs), neurodevelopmental and neuropsychiatric disorders characterized by impaired verbal communication and social interaction. The clinical and genetic complexities of the condition make it difficult to identify susceptibility factors, but two related studies now present robust evidence for a genetic involvement. The first, a genome-wide association study, identifies six single-nucleotide polymorphisms strongly associated with autism. These variants lie between two genes encoding neuronal cell-adhesion molecules (cadherins 9 and 10), suggesting possible involvement in ASD pathogenesis. The second study used copy number variation screens to identify genetic variants in two major gene pathways in children with ASDs. The changes are in the ubiquitin pathway, which has previously been associated with neurological disease, and in genes for neuronal cell-adhesion molecules.

1,331 citations


Cited by
More filters
Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

01 Jan 2016
TL;DR: The modern applied statistics with s is universally compatible with any devices to read, and is available in the digital library an online access to it is set as public so you can download it instantly.
Abstract: Thank you very much for downloading modern applied statistics with s. As you may know, people have search hundreds times for their favorite readings like this modern applied statistics with s, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. modern applied statistics with s is available in our digital library an online access to it is set as public so you can download it instantly. Our digital library saves in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Kindly say, the modern applied statistics with s is universally compatible with any devices to read.

5,249 citations

Journal ArticleDOI
TL;DR: An overview of 3D Slicer is presented as a platform for prototyping, development and evaluation of image analysis tools for clinical research applications and the utility of the platform in the scope of QIN is illustrated.

4,786 citations