scispace - formally typeset
Search or ask a question
Author

Joseph R.V. Flora

Bio: Joseph R.V. Flora is an academic researcher from University of South Carolina. The author has contributed to research in topics: Adsorption & Carbonization. The author has an hindex of 35, co-authored 99 publications receiving 4033 citations. Previous affiliations of Joseph R.V. Flora include University of Cincinnati & University of Illinois at Urbana–Champaign.


Papers
More filters
Journal ArticleDOI
TL;DR: The composition of the produced hydrochar suggests both dehydration and decarboxylation occur during carbonization, resulting in structures with high aromaticities, and process energetics suggest feedstock carbonization is exothermic.
Abstract: Hydrothermal carbonization (HTC) is a novel thermal conversion process that can be used to convert municipal waste streams into sterilized, value-added hydrochar. HTC has been mostly applied and studied on a limited number of feedstocks, ranging from pure substances to slightly more complex biomass such as wood, with an emphasis on nanostructure generation. There has been little work exploring the carbonization of complex waste streams or of utilizing HTC as a sustainable waste management technique. The objectives of this study were to evaluate the environmental implications associated with the carbonization of representative municipal waste streams (including gas and liquid products), to evaluate the physical, chemical, and thermal properties of the produced hydrochar, and to determine carbonization energetics associated with each waste stream. Results from batch carbonization experiments indicate 49–75% of the initially present carbon is retained within the char, while 20–37% and 2–11% of the carbon is ...

574 citations

Journal ArticleDOI
TL;DR: This review evaluates the use of adsorbents from four major categories: agricultural waste; naturally-occurring soil and mineral deposits; aquatic and terrestrial biomass; and other locally-available waste materials.

490 citations

Journal ArticleDOI
TL;DR: The adsorptive properties of graphene oxide (GO) were characterized, and the binding energies of diclofenac (DCF) and sulfamethoxazole (SMX) on GO adsorption were predicted using molecular modeling.

229 citations

Journal ArticleDOI
TL;DR: Results from batch experiments indicate that the majority of cellulose conversion occurs between the first 0.5-4h, and faster conversion occurs at higher temperatures, and data collected over time suggest cellulose solubilization occurs prior to conversion.

204 citations

Journal ArticleDOI
TL;DR: In this paper, the adsorption of bisphenol A (BPA) and 17α-ethinyl estradiol (EE2) by single walled carbon nanotubes (SWCNTs) was investigated.

166 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: This review provides a detailed summary of the research conducted on the inhibition of anaerobic processes and indicates that co-digestion with other waste, adaptation of microorganisms to inhibitory substances, and incorporation of methods to remove or counteract toxicants before an aerobic digestion can significantly improve the waste treatment efficiency.

4,123 citations

Journal ArticleDOI
01 Sep 2020-Heliyon
TL;DR: The physiological and biochemical effects of each heavy metal bioaccumulation in humans and the level of gravity and disquieting factor of the disease are shown.

1,185 citations

01 Mar 2001
TL;DR: In this paper, a unique chirality assignment was made for both metallic and semiconducting nanotubes of diameter d(t), using the parameters gamma(0) = 2.9 eV and omega(RBM) = 248/d(t).
Abstract: We show that the Raman scattering technique can give complete structural information for one-dimensional systems, such as carbon nanotubes. Resonant confocal micro-Raman spectroscopy of an (n,m) individual single-wall nanotube makes it possible to assign its chirality uniquely by measuring one radial breathing mode frequency omega(RBM) and using the theory of resonant transitions. A unique chirality assignment can be made for both metallic and semiconducting nanotubes of diameter d(t), using the parameters gamma(0) = 2.9 eV and omega(RBM) = 248/d(t). For example, the strong RBM intensity observed at 156 cm(-1) for 785 nm laser excitation is assigned to the (13,10) metallic chiral nanotube on a Si/SiO2 surface.

1,180 citations