scispace - formally typeset
Search or ask a question
Author

Joseph Redmon

Other affiliations: Google
Bio: Joseph Redmon is an academic researcher from University of Washington. The author has contributed to research in topics: Convolutional neural network & Object detection. The author has an hindex of 14, co-authored 16 publications receiving 40409 citations. Previous affiliations of Joseph Redmon include Google.

Papers
More filters
Posted Content
TL;DR: In this paper, the Hierarchical Interactive Memory Network (HIMN) is proposed to operate at multiple levels of temporal abstraction, allowing the agent to navigate around the scene, acquire visual understanding of scene elements, interact with objects and plan for a series of actions conditioned on the question.
Abstract: We introduce Interactive Question Answering (IQA), the task of answering questions that require an autonomous agent to interact with a dynamic visual environment. IQA presents the agent with a scene and a question, like: "Are there any apples in the fridge?" The agent must navigate around the scene, acquire visual understanding of scene elements, interact with objects (e.g. open refrigerators) and plan for a series of actions conditioned on the question. Popular reinforcement learning approaches with a single controller perform poorly on IQA owing to the large and diverse state space. We propose the Hierarchical Interactive Memory Network (HIMN), consisting of a factorized set of controllers, allowing the system to operate at multiple levels of temporal abstraction. To evaluate HIMN, we introduce IQUAD V1, a new dataset built upon AI2-THOR, a simulated photo-realistic environment of configurable indoor scenes with interactive objects (code and dataset available at this https URL). IQUAD V1 has 75,000 questions, each paired with a unique scene configuration. Our experiments show that our proposed model outperforms popular single controller based methods on IQUAD V1. For sample questions and results, please view our video: this https URL

93 citations

Proceedings ArticleDOI
01 Jun 2018
TL;DR: In this paper, the authors introduce DECADE, a dataset of ego-centric videos from a dog's perspective as well as her corresponding movements, which they use to train a model to directly predict the actions of a visually intelligent agent.
Abstract: We study the task of directly modelling a visually intelligent agent. Computer vision typically focuses on solving various subtasks related to visual intelligence. We depart from this standard approach to computer vision; instead we directly model a visually intelligent agent. Our model takes visual information as input and directly predicts the actions of the agent. Toward this end we introduce DECADE, a dataset of ego-centric videos from a dog's perspective as well as her corresponding movements. Using this data we model how the dog acts and how the dog plans her movements. We show under a variety of metrics that given just visual input we can successfully model this intelligent agent in many situations. Moreover, the representation learned by our model encodes distinct information compared to representations trained on image classification, and our learned representation can generalize to other domains. In particular, we show strong results on the task of walkable surface estimation and scene classification by using this dog modelling task as representation learning.

38 citations

Posted Content
TL;DR: In this paper, the authors introduce DECADE, a large-scale dataset of ego-centric videos from a dog's perspective as well as her corresponding movements, which they use to directly model a visually intelligent agent.
Abstract: We introduce the task of directly modeling a visually intelligent agent. Computer vision typically focuses on solving various subtasks related to visual intelligence. We depart from this standard approach to computer vision; instead we directly model a visually intelligent agent. Our model takes visual information as input and directly predicts the actions of the agent. Toward this end we introduce DECADE, a large-scale dataset of ego-centric videos from a dog's perspective as well as her corresponding movements. Using this data we model how the dog acts and how the dog plans her movements. We show under a variety of metrics that given just visual input we can successfully model this intelligent agent in many situations. Moreover, the representation learned by our model encodes distinct information compared to representations trained on image classification, and our learned representation can generalize to other domains. In particular, we show strong results on the task of walkable surface estimation by using this dog modeling task as representation learning.

29 citations

Patent
22 Dec 2017
TL;DR: In this paper, a convolutional neural network is applied to the image to obtain localization data to detect an object depicted in the image and to obtain classification data to classify the object.
Abstract: Systems and methods are disclosed for image-based object detection and classification. For example, methods may include accessing an image from an image sensor; applying a convolutional neural network to the image to obtain localization data to detect an object depicted in the image and to obtain classification data to classify the object, in which the convolutional neural network has been trained in part using training images with associated localization labels and classification labels and has been trained in part using training images with associated classification labels that lack localization labels; annotating the image based on the localization data and the classification data to obtain an annotated image; and storing, displaying, or transmitting the annotated image.

16 citations

Journal ArticleDOI
TL;DR: XNOR-Net as mentioned in this paper approximates convolutions using binary operations, which results in 58x faster convolutional operations and 32x memory savings compared to the full-precision AlexNet.
Abstract: In recent years we have seen a growing number of edge devices adopted by consumers, in their homes (e.g., smart cameras and doorbells), in their cars (e.g., driver assisted systems), and even on their persons (e.g., smart watches and rings). Similar growth is reported in industries including aerospace, agriculture, healthcare, transport, and manufacturing. At the same time that devices are getting smaller, Deep Neural Networks (DNN) that power most forms of artificial intelligence are getting larger, requiring more compute power, memory, and bandwidth. This creates a growing disconnect between advances in artificial intelligence and the ability to develop smart devices at the edge. In this paper, we present a novel approach to running state-of-the-art AI algorithms at the edge. We propose two efficient approximations to standard convolutional neural networks: Binary-Weight-Networks (BWN) and XNOR-Networks. In BWN, the filters are approximated with binary values resulting in 32x memory saving. In XNOR-Networks, both the filters and the input to convolutional layers are binary. XNOR-Networks approximate convolutions using primarily binary operations. This results in 58x faster convolutional operations (in terms of number of the high precision operations) and 32x memory savings. XNOR-Nets offer the possibility of running state-of-the-art networks on CPUs (rather than GPUs) in real-time. Our binary networks are simple, accurate, efficient, and work on challenging visual tasks. We evaluate our approach on the ImageNet classification task. The classification accuracy with a BWN version of AlexNet is the same as the full-precision AlexNet. Our code is available at: urlhttp://allenai.org/plato/xnornet.

13 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: Compared to state-of-the-art detection systems, YOLO makes more localization errors but is less likely to predict false positives on background, and outperforms other detection methods, including DPM and R-CNN, when generalizing from natural images to other domains like artwork.
Abstract: We present YOLO, a new approach to object detection. Prior work on object detection repurposes classifiers to perform detection. Instead, we frame object detection as a regression problem to spatially separated bounding boxes and associated class probabilities. A single neural network predicts bounding boxes and class probabilities directly from full images in one evaluation. Since the whole detection pipeline is a single network, it can be optimized end-to-end directly on detection performance. Our unified architecture is extremely fast. Our base YOLO model processes images in real-time at 45 frames per second. A smaller version of the network, Fast YOLO, processes an astounding 155 frames per second while still achieving double the mAP of other real-time detectors. Compared to state-of-the-art detection systems, YOLO makes more localization errors but is less likely to predict false positives on background. Finally, YOLO learns very general representations of objects. It outperforms other detection methods, including DPM and R-CNN, when generalizing from natural images to other domains like artwork.

27,256 citations

Book ChapterDOI
08 Oct 2016
TL;DR: The approach, named SSD, discretizes the output space of bounding boxes into a set of default boxes over different aspect ratios and scales per feature map location, which makes SSD easy to train and straightforward to integrate into systems that require a detection component.
Abstract: We present a method for detecting objects in images using a single deep neural network. Our approach, named SSD, discretizes the output space of bounding boxes into a set of default boxes over different aspect ratios and scales per feature map location. At prediction time, the network generates scores for the presence of each object category in each default box and produces adjustments to the box to better match the object shape. Additionally, the network combines predictions from multiple feature maps with different resolutions to naturally handle objects of various sizes. SSD is simple relative to methods that require object proposals because it completely eliminates proposal generation and subsequent pixel or feature resampling stages and encapsulates all computation in a single network. This makes SSD easy to train and straightforward to integrate into systems that require a detection component. Experimental results on the PASCAL VOC, COCO, and ILSVRC datasets confirm that SSD has competitive accuracy to methods that utilize an additional object proposal step and is much faster, while providing a unified framework for both training and inference. For \(300 \times 300\) input, SSD achieves 74.3 % mAP on VOC2007 test at 59 FPS on a Nvidia Titan X and for \(512 \times 512\) input, SSD achieves 76.9 % mAP, outperforming a comparable state of the art Faster R-CNN model. Compared to other single stage methods, SSD has much better accuracy even with a smaller input image size. Code is available at https://github.com/weiliu89/caffe/tree/ssd.

19,543 citations

Posted Content
TL;DR: This work introduces two simple global hyper-parameters that efficiently trade off between latency and accuracy and demonstrates the effectiveness of MobileNets across a wide range of applications and use cases including object detection, finegrain classification, face attributes and large scale geo-localization.
Abstract: We present a class of efficient models called MobileNets for mobile and embedded vision applications. MobileNets are based on a streamlined architecture that uses depth-wise separable convolutions to build light weight deep neural networks. We introduce two simple global hyper-parameters that efficiently trade off between latency and accuracy. These hyper-parameters allow the model builder to choose the right sized model for their application based on the constraints of the problem. We present extensive experiments on resource and accuracy tradeoffs and show strong performance compared to other popular models on ImageNet classification. We then demonstrate the effectiveness of MobileNets across a wide range of applications and use cases including object detection, finegrain classification, face attributes and large scale geo-localization.

14,406 citations

Posted Content
TL;DR: The authors present some updates to YOLO!
Abstract: We present some updates to YOLO! We made a bunch of little design changes to make it better. We also trained this new network that's pretty swell. It's a little bigger than last time but more accurate. It's still fast though, don't worry. At 320x320 YOLOv3 runs in 22 ms at 28.2 mAP, as accurate as SSD but three times faster. When we look at the old .5 IOU mAP detection metric YOLOv3 is quite good. It achieves 57.9 mAP@50 in 51 ms on a Titan X, compared to 57.5 mAP@50 in 198 ms by RetinaNet, similar performance but 3.8x faster. As always, all the code is online at this https URL

12,770 citations

Book ChapterDOI
TL;DR: SSD as mentioned in this paper discretizes the output space of bounding boxes into a set of default boxes over different aspect ratios and scales per feature map location, and combines predictions from multiple feature maps with different resolutions to naturally handle objects of various sizes.
Abstract: We present a method for detecting objects in images using a single deep neural network. Our approach, named SSD, discretizes the output space of bounding boxes into a set of default boxes over different aspect ratios and scales per feature map location. At prediction time, the network generates scores for the presence of each object category in each default box and produces adjustments to the box to better match the object shape. Additionally, the network combines predictions from multiple feature maps with different resolutions to naturally handle objects of various sizes. Our SSD model is simple relative to methods that require object proposals because it completely eliminates proposal generation and subsequent pixel or feature resampling stage and encapsulates all computation in a single network. This makes SSD easy to train and straightforward to integrate into systems that require a detection component. Experimental results on the PASCAL VOC, MS COCO, and ILSVRC datasets confirm that SSD has comparable accuracy to methods that utilize an additional object proposal step and is much faster, while providing a unified framework for both training and inference. Compared to other single stage methods, SSD has much better accuracy, even with a smaller input image size. For $300\times 300$ input, SSD achieves 72.1% mAP on VOC2007 test at 58 FPS on a Nvidia Titan X and for $500\times 500$ input, SSD achieves 75.1% mAP, outperforming a comparable state of the art Faster R-CNN model. Code is available at this https URL .

12,678 citations