scispace - formally typeset
Search or ask a question
Author

Joseph S. Lucas

Bio: Joseph S. Lucas is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Regulation of gene expression & Transcription (biology). The author has an hindex of 5, co-authored 7 publications receiving 580 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Iws1 connects two distinct CTD-binding proteins, Spt6 and HYPB/Setd2, in a megacomplex that affects mRNA export as well as the histone modification state of active genes.
Abstract: Many steps in gene expression and mRNA biosynthesis are coupled to transcription elongation and organized through the C-terminal domain (CTD) of the large subunit of RNA polymerase II (RNAPII). We showed recently that Spt6, a transcription elongation factor and histone H3 chaperone, binds to the Ser2P CTD and recruits Iws1 and the REF1/Aly mRNA export adaptor to facilitate mRNA export. Here we show that Iws1 also recruits the HYPB/Setd2 histone methyltransferase to the RNAPII elongation complex and is required for H3K36 trimethylation (H3K36me3) across the transcribed region of the c-Myc, HIV-1, and PABPC1 genes in vivo. Interestingly, knockdown of either Iws1 or HYPB/Setd2 also enhanced H3K27me3 at the 5′ end of the PABPC1 gene, and depletion of Iws1, but not HYPB/Setd2, increased histone acetylation across the coding regions at the HIV-1 and PABPC1 genes in vivo. Knockdown of HYPB/Setd2, like Iws1, induced bulk HeLa poly(A)+ mRNAs to accumulate in the nucleus. In vitro, recombinant Spt6 binds selectively to a stretch of uninterrupted consensus repeats located in the N-terminal half of the CTD and recruits Iws1. Thus Iws1 connects two distinct CTD-binding proteins, Spt6 and HYPB/Setd2, in a megacomplex that affects mRNA export as well as the histone modification state of active genes.

231 citations

Journal ArticleDOI
17 Jul 2014-Cell
TL;DR: It is proposed that the viscoelastic nature of the nuclear environment causes coding elements and regulatory elements to bounce back and forth in a spring-like fashion until specific genomic interactions are established and that spatial confinement of topological domains largely controls first-passage times for genomic interactions.

221 citations

Journal ArticleDOI
TL;DR: It is demonstrated that B-cell development in FOXO1-deficient mice is arrested in the common lymphoid progenitor (CLP) LY6D+ cell stage, and a global regulatory network is generated from EBF1 and FoxO1 genome-wide transcription factor occupancy and transcription signatures derived from E BF1- and FOXO 1- deficient CLPs.
Abstract: Recent studies have identified a number of transcriptional regulators, including E2A, early B-cell factor 1 (EBF1), FOXO1, and paired box gene 5 (PAX5), that promote early B-cell development. However, how this ensemble of regulators mechanistically promotes B-cell fate remains poorly understood. Here we demonstrate that B-cell development in FOXO1-deficient mice is arrested in the common lymphoid progenitor (CLP) LY6D(+) cell stage. We demonstrate that this phenotype closely resembles the arrest in B-cell development observed in EBF1-deficient mice. Consistent with these observations, we find that the transcription signatures of FOXO1- and EBF1-deficient LY6D(+) progenitors are strikingly similar, indicating a common set of target genes. Furthermore, we found that depletion of EBF1 expression in LY6D(+) CLPs severely affects FOXO1 mRNA abundance, whereas depletion of FOXO1 activity in LY6D(+) CLPs ablates EBF1 transcript levels. We generated a global regulatory network from EBF1 and FOXO1 genome-wide transcription factor occupancy and transcription signatures derived from EBF1- and FOXO1-deficient CLPs. This analysis reveals that EBF1 and FOXO1 act in a positive feedback circuitry to promote and stabilize specification to the B-cell lineage.

93 citations

Journal ArticleDOI
TL;DR: Evidence is provided that chromosome organisation near the sol-gel phase transition dictates the timing of genomic interactions to orchestrate gene expression and somatic recombination and that VH-DHJH motion in B-lymphocytes is tracked.
Abstract: Diverse antibody repertoires are generated through remote genomic interactions involving immunoglobulin variable (VH), diversity (DH) and joining (JH) gene segments. How such interactions are orchestrated remains unknown. Here we develop a strategy to track VH-DHJH motion in B-lymphocytes. We find that VH and DHJH segments are trapped in configurations that allow only local motion, such that spatially proximal segments remain in proximity, while spatially remote segments remain remote. Within a subset of cells, however, abrupt changes in VH-DHJH motion are observed, plausibly caused by temporal alterations in chromatin configurations. Comparison of experimental and simulated data suggests that constrained motion is imposed by a network of cross-linked chromatin chains characteristic of a gel phase, yet poised near the sol phase, a solution of independent chromatin chains. These results suggest that chromosome organization near the sol-gel phase transition dictates the timing of genomic interactions to orchestrate gene expression and somatic recombination. Antibodies are generated through remote genomic interactions involving immunoglobulin variable (VH), diversity (DH) and joining (JH) gene segments. Here the authors develop a strategy to track VH-DHJH motion in B-lymphocytes and provide evidence that chromosome organisation near the sol-gel phase transition dictates the timing of genomic interactions to orchestrate gene expression and somatic recombination.

89 citations

Journal ArticleDOI
TL;DR: It is suggested that the folding of the chromatin fiber into rosettes underpins a crucial mechanism by which antigen receptor diversity is generated.

34 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
11 Apr 2013-Cell
TL;DR: In this article, the ESC master transcription factors form unusual enhancer domains at most genes that control the pluripotent state, called super-enhancers, which consist of clusters of enhancers that are densely occupied by the master regulators and Mediator.

2,978 citations

01 Apr 2013
TL;DR: It is reported here that the ESC master transcription factors form unusual enhancer domains at most genes that control the pluripotent state, which consist of clusters of enhancers that are densely occupied by the master regulators and Mediator.
Abstract: Master transcription factors Oct4, Sox2, and Nanog bind enhancer elements and recruit Mediator to activate much of the gene expression program of pluripotent embryonic stem cells (ESCs). We report here that the ESC master transcription factors form unusual enhancer domains at most genes that control the pluripotent state. These domains, which we call super-enhancers, consist of clusters of enhancers that are densely occupied by the master regulators and Mediator. Super-enhancers differ from typical enhancers in size, transcription factor density and content, ability to activate transcription, and sensitivity to perturbation. Reduced levels of Oct4 or Mediator cause preferential loss of expression of super-enhancer-associated genes relative to other genes, suggesting how changes in gene expression programs might be accomplished during development. In other more differentiated cells, super-enhancers containing cell-type-specific master transcription factors are also found at genes that define cell identity. Super-enhancers thus play key roles in the control of mammalian cell identity.

2,075 citations

Journal Article
TL;DR: In this article, high-resolution spatial proximity maps are consistent with a model in which a complex, including the proteins CCCTC-binding factor (CTCF) and cohesin, mediates the formation of loops by a process of extrusion.
Abstract: Significance When the human genome folds up inside the cell nucleus, it is spatially partitioned into numerous loops and contact domains. How these structures form is unknown. Here, we show that data from high-resolution spatial proximity maps are consistent with a model in which a complex, including the proteins CCCTC-binding factor (CTCF) and cohesin, mediates the formation of loops by a process of extrusion. Contact domains form as a byproduct of this process. The model accurately predicts how the genome will fold, using only information about the locations at which CTCF is bound. We demonstrate the ability to reengineer loops and domains in a predictable manner by creating highly targeted mutations, some as small as a single base pair, at CTCF sites. We recently used in situ Hi-C to create kilobase-resolution 3D maps of mammalian genomes. Here, we combine these maps with new Hi-C, microscopy, and genome-editing experiments to study the physical structure of chromatin fibers, domains, and loops. We find that the observed contact domains are inconsistent with the equilibrium state for an ordinary condensed polymer. Combining Hi-C data and novel mathematical theorems, we show that contact domains are also not consistent with a fractal globule. Instead, we use physical simulations to study two models of genome folding. In one, intermonomer attraction during polymer condensation leads to formation of an anisotropic “tension globule.” In the other, CCCTC-binding factor (CTCF) and cohesin act together to extrude unknotted loops during interphase. Both models are consistent with the observed contact domains and with the observation that contact domains tend to form inside loops. However, the extrusion model explains a far wider array of observations, such as why loops tend not to overlap and why the CTCF-binding motifs at pairs of loop anchors lie in the convergent orientation. Finally, we perform 13 genome-editing experiments examining the effect of altering CTCF-binding sites on chromatin folding. The convergent rule correctly predicts the affected loops in every case. Moreover, the extrusion model accurately predicts in silico the 3D maps resulting from each experiment using only the location of CTCF-binding sites in the WT. Thus, we show that it is possible to disrupt, restore, and move loops and domains using targeted mutations as small as a single base pair.

930 citations

Journal ArticleDOI
27 Jul 2018-Science
TL;DR: This work used live-cell superresolution and light-sheet imaging to study the organization and dynamics of the Mediator coactivator and RNA polymerase II (Pol II) directly and suggests that large clusters of Mediator, recruited by transcription factors at large or clustered enhancer elements, interact with large Pol II clusters in transcriptional condensates in vivo.
Abstract: Models of gene control have emerged from genetic and biochemical studies, with limited consideration of the spatial organization and dynamics of key components in living cells. We used live-cell superresolution and light-sheet imaging to study the organization and dynamics of the Mediator coactivator and RNA polymerase II (Pol II) directly. Mediator and Pol II each form small transient and large stable clusters in living embryonic stem cells. Mediator and Pol II are colocalized in the stable clusters, which associate with chromatin, have properties of phase-separated condensates, and are sensitive to transcriptional inhibitors. We suggest that large clusters of Mediator, recruited by transcription factors at large or clustered enhancer elements, interact with large Pol II clusters in transcriptional condensates in vivo.

923 citations