scispace - formally typeset
Search or ask a question
Author

Josephine C. Adams

Bio: Josephine C. Adams is an academic researcher from University of Bristol. The author has contributed to research in topics: Fascin & Extracellular matrix. The author has an hindex of 46, co-authored 111 publications receiving 7867 citations. Previous affiliations of Josephine C. Adams include Cleveland Clinic Lerner College of Medicine & Cleveland Clinic Lerner Research Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: This review discusses current information concerning the structural organization of kelch repeat proteins, their biological roles and the molecular basis of their action.

557 citations

Journal ArticleDOI
TL;DR: It is shown that the direction in which cells extend their leading edge can be controlled by constraining cell shape using micrometer‐sized extracellular matrix (ECM) islands, and mechanical interactions between cells and ECM that modulate cytoskeletal tension play a key role in the control of directional cell motility.
Abstract: Directed cell migration is critical for tissue morphogenesis and wound healing, but the mechanism of directional control is poorly understood. Here we show that the direction in which cells extend their leading edge can be controlled by constraining cell shape using micrometer-sized extracellular matrix (ECM) islands. When cultured on square ECM islands in the presence of motility factors, cells preferentially extended lamellipodia, filopodia, and microspikes from their corners. Square cells reoriented their stress fibers and focal adhesions so that tractional forces were concentrated in these corner regions. When cell tension was dissipated, lamellipodia extension ceased. Mechanical interactions between cells and ECM that modulate cytoskeletal tension may therefore play a key role in the control of directional cell motility.

471 citations

Journal ArticleDOI
19 Oct 1990-Cell
TL;DR: Modulation of integrin function early in terminal differentiation may be an early event determining cell migration out of the basal layer of the epidermis.

434 citations

Journal ArticleDOI
TL;DR: This review discusses the functions of thrombospondins with regard to their cellular mechanisms of action and highlights recent advances in understanding how multifactorial molecular interactions, at the cell surface and within extracellular matrix, produce cell-type-specific effects on cell behavior and the organization of matrix and tissues.
Abstract: ▪ Abstract Thrombospondins are secreted, multidomain macromolecules that act as regulators of cell interactions in vertebrates. Gene knockout mice constructed for two members of this family demonstrate roles in the organization and homeostasis of multiple tissues, with particularly significant activities in the regulation of angiogenesis. This review discusses the functions of thrombospondins with regard to their cellular mechanisms of action and highlights recent advances in understanding how multifactorial molecular interactions, at the cell surface and within extracellular matrix, produce cell-type-specific effects on cell behavior and the organization of matrix and tissues.

411 citations

Journal ArticleDOI
27 Jul 1989-Nature
TL;DR: It is reported that when fibronectin is added to the methylcellulose, keratinocytes still withdraw from the cell cycle, but induction of involucrin expression is largely inhibited, and the binding of an extracellular matrix protein to its receptor can regulate differentiated gene expression in the absence of changes in cell shape.
Abstract: In the epidermis proliferation of keratinocytes is restricted to the basal layer, which is in contact with the basement membrane, and cells undergo terminal differentiation as they move upwards through the suprabasal layers. In stratified cultures of human keratinocytes, upward migration is a consequence, not a cause, of terminal differentiation and occurs because keratinocytes become less adhesive to their substratum and to one another. Most keratinocytes can be induced to differentiate to completion by placing them in suspension in methylcellulose: within 12 h DNA synthesis is irreversibly inhibited and by 24 h most cells express involucrin (ref 4; P. A. Hall, J.C.A. and F.M.W., unpublished observations). Here we report that when fibronectin is added to the methylcellulose, keratinocytes still withdraw from the cell cycle, but induction of involucrin expression is largely inhibited. The effect of fibronectin is concentration- and time-dependent and is mediated by a receptor of the integrin family. These results provide an explanation for why overt terminal differentiation is normally restricted to suprabasal cells, whereas cell-cycle withdrawal occurs within the basal layer; they also have important implications for the mechanism of epidermal wound healing. Furthermore, our data show that the binding of an extracellular matrix protein to its receptor can regulate differentiated gene expression in the absence of changes in cell shape.

406 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Pfam is now primarily based on the UniProtKB reference proteomes, with the counts of matched sequences and species reported on the website restricted to this smaller set, and the facility to view the relationship between families within a clan has been improved by the introduction of a new tool.
Abstract: In the last two years the Pfam database (http://pfam.xfam.org) has undergone a substantial reorganisation to reduce the effort involved in making a release, thereby permitting more frequent releases. Arguably the most significant of these changes is that Pfam is now primarily based on the UniProtKB reference proteomes, with the counts of matched sequences and species reported on the website restricted to this smaller set. Building families on reference proteomes sequences brings greater stability, which decreases the amount of manual curation required to maintain them. It also reduces the number of sequences displayed on the website, whilst still providing access to many important model organisms. Matches to the full UniProtKB database are, however, still available and Pfam annotations for individual UniProtKB sequences can still be retrieved. Some Pfam entries (1.6%) which have no matches to reference proteomes remain; we are working with UniProt to see if sequences from them can be incorporated into reference proteomes. Pfam-B, the automatically-generated supplement to Pfam, has been removed. The current release (Pfam 29.0) includes 16 295 entries and 559 clans. The facility to view the relationship between families within a clan has been improved by the introduction of a new tool.

4,906 citations

01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

Journal ArticleDOI
TL;DR: The development of Nrf2 knockout mice has provided key insights into the toxicological importance of this pathway, and this review highlights the key elements in this adaptive response to protection against acute and chronic cell injury provoked by environmental stresses.
Abstract: Keap1-Nrf2-ARE signaling plays a significant role in protecting cells from endogenous and exogenous stresses. The development of Nrf2 knockout mice has provided key insights into the toxicological importance of this pathway. These mice are more sensitive to the hepatic, pulmonary, ovarian, and neurotoxic consequences of acute exposures to environmental agents and drugs, inflammatory stresses, as well as chronic exposures to cigarette smoke and other carcinogens. Under quiescent conditions, the transcription factor Nrf2 interacts with the actin-anchored protein Keap1, largely localized in the cytoplasm. This quenching interaction maintains low basal expression of Nrf2-regulated genes. However, upon recognition of chemical signals imparted by oxidative and electrophilic molecules, Nrf2 is released from Keap1, escapes proteasomal degradation, translocates to the nucleus, and transactivates the expression of several dozen cytoprotective genes that enhance cell survival. This review highlights the key elements in this adaptive response to protection against acute and chronic cell injury provoked by environmental stresses.

3,066 citations