scispace - formally typeset
Search or ask a question
Author

Joshua Beilke

Bio: Joshua Beilke is an academic researcher from Anschutz Medical Campus. The author has contributed to research in topics: Islet & Transplantation. The author has an hindex of 13, co-authored 22 publications receiving 2225 citations. Previous affiliations of Joshua Beilke include University of California, San Francisco & Novo Nordisk.

Papers
More filters
Journal ArticleDOI
29 Jan 2009-Nature
TL;DR: A mouse model of cytomegalovirus infection is used to show that, like T cells, NK cells bearing the virus-specific Ly49H receptor proliferate 100-fold in the spleen and 1,000- fold in the liver after infection.
Abstract: In an adaptive immune response, naive T cells proliferate during infection and generate long-lived memory cells that undergo secondary expansion after a repeat encounter with the same pathogen. Although natural killer (NK) cells have traditionally been classified as cells of the innate immune system, they share many similarities with cytotoxic T lymphocytes. We use a mouse model of cytomegalovirus infection to show that, like T cells, NK cells bearing the virus-specific Ly49H receptor proliferate 100-fold in the spleen and 1,000-fold in the liver after infection. After a contraction phase, Ly49H-positive NK cells reside in lymphoid and non-lymphoid organs for several months. These self-renewing 'memory' NK cells rapidly degranulate and produce cytokines on reactivation. Adoptive transfer of these NK cells into naive animals followed by viral challenge results in a robust secondary expansion and protective immunity. These findings reveal properties of NK cells that were previously attributed only to cells of the adaptive immune system.

1,369 citations

Journal ArticleDOI
TL;DR: Observations indicate that loss of either insulin gene can influence progression to diabetes of NOD mice and suggest that the preproinsulin 1 gene is crucial for the spontaneous development of Nod insulitis and diabetes.
Abstract: It has been reported that an insulin 2 gene knockout, when bred onto nonobese diabetic (NOD) mice, accelerates diabetes. We produced insulin 1 gene knockout congenic NOD mice. In contrast to insulin 2, diabetes and insulitis were markedly reduced in insulin 1 knockout mice, with decreased and delayed diabetes in heterozygous females and no insulitis and diabetes in most homozygous female mice. Lack of insulitis was found for insulin 1 female homozygous knockout mice at 8, 12, and 37 weeks of age. Despite a lack of insulitis, insulin 1 homozygous knockout mice spontaneously expressed insulin autoantibodies. Administration of insulin peptide B:9-23 of both insulin 1 and 2 to NOD mice induced insulin autoantibodies. Insulin 1 is not the only lymphocytic target of NOD mice. Insulin 1 homozygous knockout islets, when transplanted into recently diabetic wild-type NOD mice, became infiltrated with lymphocytes and only transiently reversed diabetes. These observations indicate that loss of either insulin gene can influence progression to diabetes of NOD mice and suggest that the preproinsulin 1 gene is crucial for the spontaneous development of NOD insulitis and diabetes.

200 citations

Journal Article
TL;DR: In this paper, the authors used a mouse model of cytomegalovirus infection to show that, like T cells, NK cells bearing the virus-specific Ly49H receptor proliferate 100fold in the spleen and 1,000-fold in liver after infection.
Abstract: In an adaptive immune response, naive T cells proliferate during infection and generate long-lived memory cells that undergo secondary expansion after a repeat encounter with the same pathogen. Although natural killer (NK) cells have traditionally been classified as cells of the innate immune system, they share many similarities with cytotoxic T lymphocytes. We use a mouse model of cytomegalovirus infection to show that, like T cells, NK cells bearing the virus-specific Ly49H receptor proliferate 100-fold in the spleen and 1,000-fold in the liver after infection. After a contraction phase, Ly49H-positive NK cells reside in lymphoid and non-lymphoid organs for several months. These self-renewing 'memory' NK cells rapidly degranulate and produce cytokines on reactivation. Adoptive transfer of these NK cells into naive animals followed by viral challenge results in a robust secondary expansion and protective immunity. These findings reveal properties of NK cells that were previously attributed only to cells of the adaptive immune system.

194 citations

Journal ArticleDOI
TL;DR: A crucial role is shown for host MHC class I–dependent NK cell reactivity for allograft tolerance in mice induced through either costimulation blockade using CD154-specific antibody therapy or by targeting LFA-1.
Abstract: Although major histocompatibility complex (MHC) class II–restricted CD4 T cells are well appreciated for their contribution to peripheral tolerance to tissue allografts, little is known regarding MHC class I–dependent reactivity in this process. Here we show a crucial role for host MHC class I–dependent NK cell reactivity for allograft tolerance in mice induced through either costimulation blockade using CD154-specific antibody therapy or by targeting LFA-1 (also known as CD11a). Tolerance induction absolutely required host expression of MHC class I, but was independent of CD8 T cell–dependent immunity. Rather, tolerance required innate immunity involving NK1.1+ cells, but was independent of CD1d-restricted NKT cells. Therefore, NK cells seem to be generally required for induction of tolerance to islet allografts. Additional studies indicate that CD154-specific antibody–induced allograft tolerance is perforin dependent. Notably, NK cells that are perforin competent are sufficient to restore allograft tolerance in perforin-deficient recipients. Together, these results show an obligatory role for NK cells, through perforin, for induction of tolerance to islet allografts. Note: In the version of this article initially published, the authors inadvertently misquoted a study as evidence that mouse NKT cells can express CD154 (ref. 29). Rather, the cited study concerned CD40-CD40L interactions in human NK cells. By misquoting this study, the authors also omitted an appropriate reference regarding prior evidence of CD40-CD40L interactions by murine NKT cells (Kitamura, H. et al., J. Exp. Med. 189, 1121; 1999). These errors have been corrected in the PDF version.

188 citations

Journal ArticleDOI
TL;DR: Results indicate that the provision of native insulin B:9-23 sequences is sufficient to prime anti-insulin autoimmunity and that subsequent transfer of diabetes following peptide immunization requires native insulin b chain amino acids 9-23 expression in islets.
Abstract: NOD mice with knockout of both native insulin genes and a mutated proinsulin transgene, alanine at position B16 in preproinsulin (B16:A-dKO mice), do not develop diabetes. Transplantation of NOD islets, but not bone marrow, expressing native insulin sequences (tyrosine at position B16) into B16:A-dKO mice rapidly restored development of insulin autoantibodies (IAAs) and insulitis, despite the recipients' pancreatic islets lacking native insulin sequences. Splenocytes from B16:A-dKO mice that received native insulin-positive islets induced diabetes when transferred into wild-type NOD/SCID or B16:A-dKO NOD/SCID mice. Splenocytes from mice immunized with native insulin B chain amino acids 9-23 (insulin B:9-23) peptide in CFA induced rapid diabetes upon transfer only in recipients expressing the native insulin B:9-23 sequence in their pancreata. Additionally, CD4(+) T cells from B16:A-dKO mice immunized with native insulin B:9-23 peptide promoted IAAs in NOD/SCID mice. These results indicate that the provision of native insulin B:9-23 sequences is sufficient to prime anti-insulin autoimmunity and that subsequent transfer of diabetes following peptide immunization requires native insulin B:9-23 expression in islets. Our findings demonstrate dependence on B16 alanine versus tyrosine of insulin B:9-23 for both the initial priming and the effector phase of NOD anti-islet autoimmunity.

104 citations


Cited by
More filters
Journal ArticleDOI
03 Feb 2012-Cell
TL;DR: Oxygen homeostasis represents an organizing principle for understanding metazoan evolution, development, physiology, and pathobiology and rapid progress is being made in elucidating homeostatic roles of HIFs in many physiological systems, determining pathological consequences of H IF dysregulation in chronic diseases, and investigating potential targeting of Hifs for therapeutic purposes.

2,450 citations

Journal ArticleDOI
07 Jan 2011-Science
TL;DR: NK cells are now recognized to express a repertoire of activating and inhibitory receptors that is calibrated to ensure self-tolerance while allowing efficacy against assaults such as viral infection and tumor development.
Abstract: Natural killer (NK) cells were originally defined as effector lymphocytes of innate immunity endowed with constitutive cytolytic functions. More recently, a more nuanced view of NK cells has emerged. NK cells are now recognized to express a repertoire of activating and inhibitory receptors that is calibrated to ensure self-tolerance while allowing efficacy against assaults such as viral infection and tumor development. Moreover, NK cells do not react in an invariant manner but rather adapt to their environment. Finally, recent studies have unveiled that NK cells can also mount a form of antigen-specific immunologic memory. NK cells thus exert sophisticated biological functions that are attributes of both innate and adaptive immunity, blurring the functional borders between these two arms of the immune response.

2,280 citations

Journal ArticleDOI
TL;DR: Current progress in epidemiology, pathology, diagnosis, and treatment of type 1 diabetes, and prospects for an improved future for individuals with this disease are discussed.

1,881 citations

Journal ArticleDOI
22 Apr 2016-Science
TL;DR: Proof-of-principle experimental studies support the hypothesis that trained immunity is one of the main immunological processes that mediate the nonspecific protective effects against infections induced by vaccines, such as bacillus Calmette-Guérin or measles vaccination.
Abstract: The general view that only adaptive immunity can build immunological memory has recently been challenged. In organisms lacking adaptive immunity, as well as in mammals, the innate immune system can mount resistance to reinfection, a phenomenon termed "trained immunity" or "innate immune memory." Trained immunity is orchestrated by epigenetic reprogramming, broadly defined as sustained changes in gene expression and cell physiology that do not involve permanent genetic changes such as mutations and recombination, which are essential for adaptive immunity. The discovery of trained immunity may open the door for novel vaccine approaches, new therapeutic strategies for the treatment of immune deficiency states, and modulation of exaggerated inflammation in autoinflammatory diseases.

1,690 citations

Journal ArticleDOI
26 Sep 2014-Science
TL;DR: The identification of glycolysis as a fundamental process in trained immunity further highlights a key regulatory role for metabolism in innate host defense and defines a potential therapeutic target in both infectious and inflammatory diseases.
Abstract: Epigenetic reprogramming of myeloid cells, also known as trained immunity, confers nonspecific protection from secondary infections. Using histone modification profiles of human monocytes trained with the Candida albicans cell wall constituent β-glucan, together with a genome-wide transcriptome, we identified the induced expression of genes involved in glucose metabolism. Trained monocytes display high glucose consumption, high lactate production, and a high ratio of nicotinamide adenine dinucleotide (NAD(+)) to its reduced form (NADH), reflecting a shift in metabolism with an increase in glycolysis dependent on the activation of mammalian target of rapamycin (mTOR) through a dectin-1-Akt-HIF-1α (hypoxia-inducible factor-1α) pathway. Inhibition of Akt, mTOR, or HIF-1α blocked monocyte induction of trained immunity, whereas the adenosine monophosphate-activated protein kinase activator metformin inhibited the innate immune response to fungal infection. Mice with a myeloid cell-specific defect in HIF-1α were unable to mount trained immunity against bacterial sepsis. Our results indicate that induction of aerobic glycolysis through an Akt-mTOR-HIF-1α pathway represents the metabolic basis of trained immunity.

1,374 citations