scispace - formally typeset
Search or ask a question
Author

Joshua C. Gray

Bio: Joshua C. Gray is an academic researcher from Uniformed Services University of the Health Sciences. The author has contributed to research in topics: Impulsivity & Medicine. The author has an hindex of 19, co-authored 59 publications receiving 1301 citations. Previous affiliations of Joshua C. Gray include Brown University & University of Georgia.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: These findings support the hypothesis that diverse measures of impulsivity can broadly be organized into three categories that are largely distinct from one another and warrant investigation among individuals with clinical levels of addictive behavior.
Abstract: Impulsivity has been strongly linked to addictive behaviors, but can be operationalized in a number of ways that vary considerably in overlap, suggesting multidimensionality. This study tested the hypothesis that the latent structure among multiple measures of impulsivity would reflect the following three broad categories: impulsive choice, reflecting discounting of delayed rewards; impulsive action, reflecting ability to inhibit a prepotent motor response; and impulsive personality traits, reflecting self-reported attributions of self-regulatory capacity. The study used a cross-sectional confirmatory factor analysis of multiple impulsivity assessments. Participants were 1252 young adults (62 % female) with low levels of addictive behavior, who were assessed in individual laboratory rooms at the University of Chicago and the University of Georgia. The battery comprised a Delay (replace hyphen with space) Discounting Task, Monetary Choice Questionnaire, Conners’ Continuous Performance Test, Go/NoGo Task, Stop Signal Task, Barratt Impulsiveness Scale, and the UPPS-P Impulsive Behavior Scale. The hypothesized three-factor model provided the best fit to the data, although sensation seeking was excluded from the final model. The three latent factors were largely unrelated to each other and were variably associated with substance use. These findings support the hypothesis that diverse measures of impulsivity can broadly be organized into three categories that are largely distinct from one another. These findings warrant investigation among individuals with clinical levels of addictive behavior and may be applied to understanding the underlying biological mechanisms of these categories.

293 citations

Journal ArticleDOI
TL;DR: It is shown that IPT are genetically associated with substance use and ADHD, suggesting impulsivity is an endophenotype contributing to these psychiatric conditions.
Abstract: Impulsive personality traits are complex heritable traits that are governed by frontal-subcortical circuits and are associated with numerous neuropsychiatric disorders, particularly drug abuse and attention-deficit/hyperactivity disorder (ADHD). In collaboration with the genetics company 23andMe, we performed 10 genome-wide association studies on measures of impulsive personality traits [the short version of the UPPS-P Impulsive Behavior Scale, and the Barratt Impulsiveness Scale (BIS-11)] and drug experimentation (the number of drug classes an individual had tried in their lifetime) in up to 22,861 male and female adult human research participants of European ancestry. Impulsive personality traits and drug experimentation showed single nucleotide polymorphism heritabilities that ranged from 5 to 11%. Genetic variants in the CADM2 locus were significantly associated with UPPS-P Sensation Seeking (p = 8.3 × 10−9, rs139528938) and showed a suggestive association with Drug Experimentation (p = 3.0 × 10−7, rs2163971; r2 = 0.68 with rs139528938). Furthermore, genetic variants in the CACNA1I locus were significantly associated with UPPS-P Negative Urgency (p = 3.8 × 10−8; rs199694726). The role of these genes was supported by single variant, gene- and transcriptome-based analyses. Multiple subscales from both UPPS-P and BIS showed strong genetic correlations (>0.5) with Drug Experimentation and other substance use traits measured in independent cohorts, including smoking initiation, and lifetime cannabis use. Several UPPS-P and BIS subscales were genetically correlated with ADHD (rg = 0.30–0.51), supporting their validity as endophenotypes. Our findings demonstrate a role for common genetic contributions to individual differences in impulsivity. Furthermore, our study is the first to provide a genetic dissection of the relationship between different types of impulsive personality traits and various psychiatric disorders. SIGNIFICANCE STATEMENT Impulsive personality traits (IPTs) are heritable traits that are governed by frontal-subcortical circuits and are associated with neuropsychiatric disorders, particularly substance use disorders. We have performed genome-wide association studies of IPTs to identify regions and genes that account for this heritable variation. IPTs and drug experimentation were modestly heritable (5–11%). We identified an association between single nucleotide polymorphisms in CADM2 and both sensation seeking and drug experimentation; and between variants in CACNA1I and negative urgency. The role of these genes was supported by single variant, gene- and transcriptome-based analyses. This study provides evidence that impulsivity can be genetically separated into distinct components. We showed that IPT are genetically associated with substance use and ADHD, suggesting impulsivity is an endophenotype contributing to these psychiatric conditions.

112 citations

Journal ArticleDOI
TL;DR: Findings from genetic studies of personality have furthered the understanding about the genetic etiology of personality, which, like neuropsychiatric diseases themselves, is highly polygenic.
Abstract: Personality traits are the relatively enduring patterns of thoughts, feelings and behaviors that reflect the tendency to respond in certain ways under certain circumstances. Twin and family studies have showed that personality traits are moderately heritable, and can predict various lifetime outcomes, including psychopathology. The Research Domain Criteria characterizes psychiatric diseases as extremes of normal tendencies, including specific personality traits. This implies that heritable variation in personality traits, such as neuroticism, would share a common genetic basis with psychiatric diseases, such as major depressive disorder. Despite considerable efforts over the past several decades, the genetic variants that influence personality are only beginning to be identified. We review these recent and increasingly rapid developments, which focus on the assessment of personality via several commonly used personality questionnaires in healthy human subjects. Study designs covered include twin, linkage, candidate gene association studies, genome-wide association studies and polygenic analyses. Findings from genetic studies of personality have furthered our understanding about the genetic etiology of personality, which, like neuropsychiatric diseases themselves, is highly polygenic. Polygenic analyses have showed genetic correlations between personality and psychopathology, confirming that genetic studies of personality can help to elucidate the etiology of several neuropsychiatric diseases.

110 citations

Journal ArticleDOI
TL;DR: Participation in a randomized clinical trial designed to enhance supportive parenting ameliorated the association of years lived in poverty with left dentate gyrus and CA3 hippocampal subfields and left amygdalar volumes, consistent with a possible role for supportive parenting and suggest a strategy for narrowing social disparities.
Abstract: Importance This study was designed to determine whether a preventive intervention focused on enhancing supportive parenting could ameliorate the association between exposure to poverty and brain development in low socioeconomic status African American individuals from the rural South. Objective To determine whether participation in an efficacious prevention program designed to enhance supportive parenting for rural African American children will ameliorate the association between living in poverty and reduced hippocampal and amygdalar volumes in adulthood. Design, Setting, and Participants In the rural southeastern United States, African American parents and their 11-year-old children were assigned randomly to the Strong African American Families randomized prevention trial or to a control condition. Parents provided data used to calculate income-to-needs ratios when children were aged 11 to 13 years and 16 to 18 years. When the participants were aged 25 years, hippocampal and amygdalar volumes were measured using magnetic resonance imaging. Exposures Household poverty was measured by income-to-needs ratios. Main Outcomes and Measures Young adults’ whole hippocampal, dentate gyrus, and CA3 hippocampal subfields as well as amygdalar volumes were assessed using magnetic resonance imaging. Results Of the 667 participants in the Strong African American Families randomized prevention trial, 119 right-handed African American individuals aged 25 years living in rural areas were recruited. Years lived in poverty across ages 11 to 18 years forecasted diminished left dentate gyrus (simple slope, −14.20; standard error, 5.22; P = .008) and CA3 (simple slope, −6.42; standard error, 2.42; P = .009) hippocampal subfields and left amygdalar (simple slope, −34.62; standard error, 12.74; P = .008) volumes among young adults in the control condition (mean [SD] time, 2.04 [1.88] years) but not among those who participated in the Strong African American Families program (mean [SD] time, 2.61 [1.77] years). Conclusions and Relevance In this study, we described how participation in a randomized clinical trial designed to enhance supportive parenting ameliorated the association of years lived in poverty with left dentate gyrus and CA3 hippocampal subfields and left amygdalar volumes. These findings are consistent with a possible role for supportive parenting and suggest a strategy for narrowing social disparities.

93 citations

Journal ArticleDOI
TL;DR: It is concluded that conducting a genetic study using responses to an online questionnaire in a population not ascertained for AUD may represent a cost‐effective strategy for elucidating aspects of the etiology of AUD.
Abstract: Genetic factors contribute to the risk for developing alcohol use disorder (AUD). In collaboration with the genetics company 23andMe, Inc., we performed a genome-wide association study of the alcohol use disorder identification test (AUDIT), an instrument designed to screen for alcohol misuse over the past year. Our final sample consisted of 20 328 research participants of European ancestry (55.3% females; mean age = 53.8, SD = 16.1) who reported ever using alcohol. Our results showed that the 'chip-heritability' of AUDIT score, when treated as a continuous phenotype, was 12%. No loci reached genome-wide significance. The gene ADH1C, which has been previously implicated in AUD, was among our most significant associations (4.4 × 10-7 ; rs141973904). We also detected a suggestive association on chromosome 1 (2.1 × 10-7 ; rs182344113) near the gene KCNJ9, which has been implicated in mouse models of high ethanol drinking. Using linkage disequilibrium score regression, we identified positive genetic correlations between AUDIT score, high alcohol consumption and cigarette smoking. We also observed an unexpected positive genetic correlation between AUDIT and educational attainment and additional unexpected negative correlations with body mass index/obesity and attention-deficit/hyperactivity disorder. We conclude that conducting a genetic study using responses to an online questionnaire in a population not ascertained for AUD may represent a cost-effective strategy for elucidating aspects of the etiology of AUD.

89 citations


Cited by
More filters
01 Jan 2016
TL;DR: The using multivariate statistics is universally compatible with any devices to read, allowing you to get the most less latency time to download any of the authors' books like this one.
Abstract: Thank you for downloading using multivariate statistics. As you may know, people have look hundreds times for their favorite novels like this using multivariate statistics, but end up in infectious downloads. Rather than reading a good book with a cup of tea in the afternoon, instead they juggled with some harmful bugs inside their laptop. using multivariate statistics is available in our digital library an online access to it is set as public so you can download it instantly. Our books collection saves in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the using multivariate statistics is universally compatible with any devices to read.

14,604 citations

Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

Journal ArticleDOI
TL;DR: This Review comprehensively assess the benefits and limitations of GWAS in human populations and discusses the relevance of performing more GWAS, with a focus on the cardiometabolic field.
Abstract: Genome-wide association studies (GWAS) involve testing genetic variants across the genomes of many individuals to identify genotype–phenotype associations. GWAS have revolutionized the field of complex disease genetics over the past decade, providing numerous compelling associations for human complex traits and diseases. Despite clear successes in identifying novel disease susceptibility genes and biological pathways and in translating these findings into clinical care, GWAS have not been without controversy. Prominent criticisms include concerns that GWAS will eventually implicate the entire genome in disease predisposition and that most association signals reflect variants and genes with no direct biological relevance to disease. In this Review, we comprehensively assess the benefits and limitations of GWAS in human populations and discuss the relevance of performing more GWAS. Despite the success of human genome-wide association studies (GWAS) in associating genetic variants and complex diseases or traits, criticisms of the usefulness of this study design remain. This Review assesses the pros and cons of GWAS, with a focus on the cardiometabolic field.

1,002 citations