scispace - formally typeset
Search or ask a question
Author

Joshua D. Moss

Bio: Joshua D. Moss is an academic researcher from University of California, San Francisco. The author has contributed to research in topics: Ventricular tachycardia & Medicine. The author has an hindex of 14, co-authored 58 publications receiving 1667 citations. Previous affiliations of Joshua D. Moss include Harvard University & University of California, Berkeley.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper describes a solution based on materials that integrate directly with the thin elastic membranes of otherwise conventional balloon catheters, to provide diverse, multimodal functionality suitable for clinical use.
Abstract: Developing advanced surgical tools for minimally invasive procedures represents an activity of central importance to improving human health. A key challenge is in establishing biocompatible interfaces between the classes of semiconductor device and sensor technologies that might be most useful in this context and the soft, curvilinear surfaces of the body. This paper describes a solution based on materials that integrate directly with the thin elastic membranes of otherwise conventional balloon catheters, to provide diverse, multimodal functionality suitable for clinical use. As examples, we present sensors for measuring temperature, flow, tactile, optical and electrophysiological data, together with radiofrequency electrodes for controlled, local ablation of tissue. Use of such 'instrumented' balloon catheters in live animal models illustrates their operation, as well as their specific utility in cardiac ablation therapy. The same concepts can be applied to other substrates of interest, such as surgical gloves.

700 citations

Journal ArticleDOI
TL;DR: Development of a class of mechanically flexible silicon electronics for multiplexed measurement of signals in an intimate, conformal integrated mode on the dynamic, three-dimensional surfaces of soft tissues in the human body is reported.
Abstract: In all current implantable medical devices such as pacemakers, deep brain stimulators, and epilepsy treatment devices, each electrode is independently connected to separate control systems. The ability of these devices to sample and stimulate tissues is hindered by this configuration and by the rigid, planar nature of the electronics and the electrode-tissue interfaces. Here, we report the development of a class of mechanically flexible silicon electronics for multiplexed measurement of signals in an intimate, conformal integrated mode on the dynamic, three-dimensional surfaces of soft tissues in the human body. We demonstrate this technology in sensor systems composed of 2016 silicon nanomembrane transistors configured to record electrical activity directly from the curved, wet surface of a beating porcine heart in vivo. The devices sample with simultaneous submillimeter and submillisecond resolution through 288 amplified and multiplexed channels. We use this system to map the spread of spontaneous and paced ventricular depolarization in real time, at high resolution, on the epicardial surface in a porcine animal model. This demonstration is one example of many possible uses of this technology in minimally invasive medical devices.

392 citations

Journal ArticleDOI
TL;DR: In this paper, the authors evaluated the risk of death/ventricular tachycardia (VT) in patients with extracardiac sarcoidosis and preserved left ventricular ejection fraction.
Abstract: Background— Cardiac sarcoidosis is associated with an increased risk of heart failure and sudden death, but its risk in patients with preserved left ventricular ejection fraction is unknown. Using cardiovascular magnetic resonance in patients with extracardiac sarcoidosis and preserved left ventricular ejection fraction, we sought to (1) determine the prevalence of cardiac sarcoidosis or associated myocardial damage, defined by the presence of late gadolinium enhancement (LGE), (2) quantify their risk of death/ventricular tachycardia (VT), and (3) identify imaging-based covariates that predict who is at greatest risk of death/VT. Methods and Results— Parameters of left and right ventricular function and LGE burden were measured in 205 patients with left ventricular ejection fraction >50% and extracardiac sarcoidosis who underwent cardiovascular magnetic resonance for LGE evaluation. The association between covariates and death/VT in the entire group and within the LGE+ group was determined using Cox proportional hazard models and time-dependent receiver–operator curves analysis. Forty-one of 205 patients (20%) had LGE; 12 of 205 (6%) died or had VT during follow-up; of these, 10 (83%) were in the LGE+ group. In the LGE+ group (1) the rate of death/VT per year was >20× higher than LGE− (4.9 versus 0.2%, P <0.01); (2) death/VT were associated with a greater burden of LGE (14±11 versus 5±5%, P <0.01) and right ventricular dysfunction (right ventricular EF 45±12 versus 53±28%, P =0.04). LGE burden was the best predictor of death/VT (area under the receiver-operating characteristics curve, 0.80); for every 1% increase of LGE burden, the hazard of death/VT increased by 8%. Conclusions— Sarcoidosis patients with LGE are at significant risk for death/VT, even with preserved left ventricular ejection fraction. Increased LGE burden and right ventricular dysfunction can identify LGE+ patients at highest risk of death/VT.

151 citations

Patent
15 Dec 2010
TL;DR: In this paper, biomedical devices and methods of making and using biomedical devices for sensing and actuation applications are described. But, they do not specify any specific applications of these devices.
Abstract: Provided herein are biomedical devices and methods of making and using biomedical devices for sensing and actuation applications. For example, flexible and/or stretchable biomedical devices are provided including electronic devices useful for establishing in situ conformal contact with a tissue in a biological environment. The invention includes implantable electronic devices and devices administered to the surfaces(s) of a target tissue, for example, for obtaining electrophysiology data from a tissue such as cardiac, brain tissue or skin.

130 citations

Journal ArticleDOI
TL;DR: 3D TTE showed a clear association between device lead position and TR, and guidance should be considered for placement in a commissural position to minimize TR induced by device-leads.
Abstract: Objectives This study sought to: 1) determine the feasibility of using 3-dimensional transthoracic echocardiography (3D TTE) in patients with implantable cardiac resynchronization devices, pacemakers, and defibrillators to visualize the device leads in the right heart and their position relative to the tricuspid valve leaflets; 2) determine the prevalence of different lead positions; and 3) study the relationship between lead location and tricuspid regurgitation (TR) severity. Background Pacemaker, defibrillator, and cardiac resynchronization device implantation is currently guided by fluoroscopy, not allowing targeted lead positioning relative to the tricuspid valve leaflets. These leads have been reported to cause TR of variable degrees, but echocardiography is not routinely used to elucidate the mechanisms of lead interference with tricuspid valve leaflets in individual patients. Methods 3D TTE full-volume images of the right ventricle and/or zoomed images of the tricuspid valve were obtained in 121 patients with implanted devices. Images were viewed offline to determine the position of the device-lead relative to the tricuspid valve leaflets. Severity of TR was estimated on the basis of vena contracta measurements. Results 3D TTE clearly depicted lead position in 90% of patients. The right ventricular lead was impinging on either the posterior (20%) or septal (23%) leaflet or was not interfering with leaflet motion (53%) when positioned near the posteroseptal commissure or in the central portion of the tricuspid valve orifice. In the remaining patients, leads were impinging on the anterior leaflet (4%) or positioned in either the anteroposterior or anteroseptal commissure (3%). Leads interfering with normal leaflet mobility were associated with more TR than nonimpinging leads (vena contracta: median 0.62 cm [1st and 3rd quartiles: 0.51, 0.84 cm] vs. 0.27 cm [1st and 3rd quartiles: 0.00, 0.48 cm]; p Conclusions 3D TTE showed a clear association between device lead position and TR. To minimize TR induced by device-leads, 3D TTE guidance should be considered for placement in a commissural position.

91 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Transparent, conducting spray-deposited films of single-walled carbon nanotubes are reported that can be rendered stretchable by applying strain along each axis, and then releasing this strain.
Abstract: Transparent films of carbon nanotubes can accommodate strains of up to 150% and demonstrate conductivities as high as 2,200 S cm−1 in the stretched state.

2,847 citations

Journal ArticleDOI
TL;DR: Electronic networks comprised of flexible, stretchable, and robust devices that are compatible with large-area implementation and integrated with multiple functionalities is a testament to the progress in developing an electronic skin akin to human skin.
Abstract: Human skin is a remarkable organ. It consists of an integrated, stretchable network of sensors that relay information about tactile and thermal stimuli to the brain, allowing us to maneuver within our environment safely and effectively. Interest in large-area networks of electronic devices inspired by human skin is motivated by the promise of creating autonomous intelligent robots and biomimetic prosthetics, among other applications. The development of electronic networks comprised of flexible, stretchable, and robust devices that are compatible with large-area implementation and integrated with multiple functionalities is a testament to the progress in developing an electronic skin (e-skin) akin to human skin. E-skins are already capable of providing augmented performance over their organic counterpart, both in superior spatial resolution and thermal sensitivity. They could be further improved through the incorporation of additional functionalities (e.g., chemical and biological sensing) and desired properties (e.g., biodegradability and self-powering). Continued rapid progress in this area is promising for the development of a fully integrated e-skin in the near future.

1,950 citations

DOI
05 Nov 2009
TL;DR: 结节病易误诊,据王洪武等~([1])收集国内18篇关于此第一印象中拟诊 结核5例,为此应引起临床对本 病诊
Abstract: 结节病易误诊,据王洪武等~([1])收集国内18篇关于此病误诊的文献,误诊率高达63.2%,当然有误诊就会有误治,如孙永昌等~([2])报道26例结节病在影像学检查诊断的第一印象中拟诊结核5例,其中就有2例完成规范的抗结核治疗,为此应引起临床对本病诊治的重视。

1,821 citations

Journal ArticleDOI
TL;DR: This manuscript describes a unique class of locomotive robot, composed exclusively of soft materials (elastomeric polymers), which is inspired by animals that do not have hard internal skeletons, and illustrates an advantage of soft robotics.
Abstract: This manuscript describes a unique class of locomotive robot: A soft robot, composed exclusively of soft materials (elastomeric polymers), which is inspired by animals (e.g., squid, starfish, worms) that do not have hard internal skeletons. Soft lithography was used to fabricate a pneumatically actuated robot capable of sophisticated locomotion (e.g., fluid movement of limbs and multiple gaits). This robot is quadrupedal; it uses no sensors, only five actuators, and a simple pneumatic valving system that operates at low pressures (< 10 psi). A combination of crawling and undulation gaits allowed this robot to navigate a difficult obstacle. This demonstration illustrates an advantage of soft robotics: They are systems in which simple types of actuation produce complex motion.

1,716 citations

Journal ArticleDOI
TL;DR: This Review will cover materials and devices designed for mimicking the skin's ability to sense and generate biomimetic signals.
Abstract: Skin plays an important role in mediating our interactions with the world. Recreating the properties of skin using electronic devices could have profound implications for prosthetics and medicine. The pursuit of artificial skin has inspired innovations in materials to imitate skin's unique characteristics, including mechanical durability and stretchability, biodegradability, and the ability to measure a diversity of complex sensations over large areas. New materials and fabrication strategies are being developed to make mechanically compliant and multifunctional skin-like electronics, and improve brain/machine interfaces that enable transmission of the skin's signals into the body. This Review will cover materials and devices designed for mimicking the skin's ability to sense and generate biomimetic signals.

1,681 citations