scispace - formally typeset
Search or ask a question
Author

Joshua E. Goldberger

Bio: Joshua E. Goldberger is an academic researcher from Ohio State University. The author has contributed to research in topics: Germanane & Graphane. The author has an hindex of 38, co-authored 108 publications receiving 15073 citations. Previous affiliations of Joshua E. Goldberger include National Center for Electron Microscopy & Lawrence Berkeley National Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the effectiveness of different topochemical methods to maximize methyl-termination in GeCH3 was compared, and it was shown that a previously developed CH3I/H2O phase transfer route produces a small percentage of partially oxidized germanane.
Abstract: The topotactic transformation of Zintl phases such as CaGe2 into organic-terminated germanium graphane analogues using haloalkanes is a powerful route for generating new 2D optoelectronic and spintronic building blocks. However, uniform ligand coverage is necessary for optimizing the properties and stability of these single-atom-thick frameworks. Here, we compare the effectiveness of different topochemical methods to maximize methyl-termination in GeCH3. We show that a previously developed CH3I/H2O phase transfer route produces a small percentage of partially oxidized germanane. The partially oxidized termination is readily removed upon HCl treatment, which leads to Ge–Cl termination, but rapidly reoxidizes after exposure to the ambient atmosphere. We then show that a one-pot route with CH3I in distilled CH3CN solvent and at least six equivalents of H2O results in no oxidation. The GeCH3 prepared from this one-pot route also has an increased −CH3/–H ratio of termination from ∼90:10 to ∼95:5, is air-stable...

36 citations

Journal ArticleDOI
TL;DR: It is demonstrated that reversible Li intercalation is also achievable in the hybrid organic/inorganic dimensionally reduced 1D van der Waals solid TiS2(ethylenediamine), opening up new opportunities to fine-tune the physical properties in this emerging family of dimensionally reduction materials.
Abstract: The intercalation of metal cations in 2D layered materials allows for the discovery of unique electronic, magnetic and correlated properties. We demonstrate that reversible Li intercalation is also achievable in the hybrid organic/inorganic dimensionally reduced 1D van der Waals solid TiS2(ethylenediamine). Upon intercalation, electrons are injected into the lattice as Ti4+ is reduced to Ti3+ leading to an order of magnitude decrease in electrical resistivity. This reversible intercalation process opens up new opportunities to fine-tune the physical properties in this emerging family of dimensionally reduced materials.

34 citations

Journal ArticleDOI
TL;DR: In this article, a hybrid inorganic/organic materials possessing zirconium in the inorganic framework have been synthesized, and the resulting xerogels were amorphous and exhibited high surface areas and high surface coverages of OH functionalities.
Abstract: New hybrid inorganic/organic materials possessing zirconium in the inorganic framework have been synthesized. Co-thermolyses in sealed reactors (toluene, AlCl3 catalyst, 155 °C) of Zr[OSi(OtBu)3]4 in the presence of (EtO)3Si(CH2)nSi(OEt)3 (n = 1, 2) or (EtO)3Si(C6H4)nSi(OEt)3 (n = 1, 2; C6H4 = 1,4-phenylene) monomers rapidly yielded monolithic, transparent gels. The resulting xerogels were amorphous and exhibited high surface areas and high surface coverages of OH functionalities. Solid-state 29Si and 13C CP MAS NMR spectroscopies were used to establish the presence of intact, organic bridging groups and to verify the presence of unreacted ethoxy groups. Energy-dispersive X-ray spectroscopy was used to elucidate the elemental composition and distribution throughout the material, and atomic force microscopy was used to probe surface adhesive properties.

31 citations

Journal ArticleDOI
TL;DR: The sp3-hybridized group 14 graphane analogues are an intriguing regime in materials design in which both surface functionalization and solid-state chemistry can be uniquely exploited to systematically design properties and phenomena.
Abstract: The sp3-hybridized group 14 graphane analogues are a unique family of 2D materials in which every atom requires a terminal ligand for stability. Consequently, the optical, electronic, and thermal properties of these materials can be manipulated via covalent chemistry. Herein, we review the methodologies for preparing these materials, and compare their functionalization densities to Si/Ge(111) surfaces and other covalently terminated 2D materials. We discuss how the electronic structure, optical properties, and thermal stability of the 2D framework can be broadly tuned with the ligand identity and framework element. We highlight their recent application in electronics, optoelectronics, photocatalysis, and batteries. Overall, these materials are an intriguing regime in materials design in which both surface functionalization and solid-state chemistry can be uniquely exploited to systematically design properties and phenomena.

30 citations

Journal ArticleDOI
TL;DR: This work demonstrates that GeH can be electronically doped by incorporating stoichiometric equivalents of phosphorus dopant atoms into the CaGe2 precursor, and predicts that the current distribution in top-contacted crystals is restricted to only the topmost, water activated crystal layers.
Abstract: The synthesis of germanane (GeH) has opened the door for covalently functionalizable 2D materials in electronics. Herein, we demonstrate that GeH can be electronically doped by incorporating stoichiometric equivalents of phosphorus dopant atoms into the CaGe2 precursor. The electronic properties of these doped materials show significant atmospheric sensitivity, and we observe a reduction in resistance by up to three orders of magnitude when doped samples are measured in water-containing atmospheres. This variation in resistance is a result of water activation of the phosphorus dopants. Transport measurements in different contact geometries show a significant anisotropy between in-plane and out-of-plane resistances, with a much larger out-of-plane resistance. These measurements along with finite element modeling results predict that the current distribution in top-contacted crystals is restricted to only the topmost, water activated crystal layers. Taken together, these results pave the way for future electronic and optoelectronic applications utilizing group IV graphane analogues.

29 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Abstract: Single-layer metal dichalcogenides are two-dimensional semiconductors that present strong potential for electronic and sensing applications complementary to that of graphene.

13,348 citations

Journal ArticleDOI
25 Jul 2013-Nature
TL;DR: With steady improvement in fabrication techniques and using graphene’s springboard, van der Waals heterostructures should develop into a large field of their own.
Abstract: Fabrication techniques developed for graphene research allow the disassembly of many layered crystals (so-called van der Waals materials) into individual atomic planes and their reassembly into designer heterostructures, which reveal new properties and phenomena. Andre Geim and Irina Grigorieva offer a forward-looking review of the potential of layering two-dimensional materials into novel heterostructures held together by weak van der Waals interactions. Dozens of these one-atom- or one-molecule-thick crystals are known. Graphene has already been well studied but others, such as monolayers of hexagonal boron nitride, MoS2, WSe2, graphane, fluorographene, mica and silicene are attracting increasing interest. There are many other monolayers yet to be examined of course, and the possibility of combining graphene with other crystals adds even further options, offering exciting new opportunities for scientific exploration and technological innovation. Research on graphene and other two-dimensional atomic crystals is intense and is likely to remain one of the leading topics in condensed matter physics and materials science for many years. Looking beyond this field, isolated atomic planes can also be reassembled into designer heterostructures made layer by layer in a precisely chosen sequence. The first, already remarkably complex, such heterostructures (often referred to as ‘van der Waals’) have recently been fabricated and investigated, revealing unusual properties and new phenomena. Here we review this emerging research area and identify possible future directions. With steady improvement in fabrication techniques and using graphene’s springboard, van der Waals heterostructures should develop into a large field of their own.

8,162 citations

Journal ArticleDOI
TL;DR: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties are equally important.
Abstract: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties * To whom correspondence should be addressed. Phone, 404-8940292; fax, 404-894-0294; e-mail, mostafa.el-sayed@ chemistry.gatech.edu. † Case Western Reserve UniversitysMillis 2258. ‡ Phone, 216-368-5918; fax, 216-368-3006; e-mail, burda@case.edu. § Georgia Institute of Technology. 1025 Chem. Rev. 2005, 105, 1025−1102

6,852 citations

Journal ArticleDOI
TL;DR: This work introduces a version of the dye-sensitized cell in which the traditional nanoparticle film is replaced by a dense array of oriented, crystalline ZnO nanowires, which features a surface area up to one-fifth as large as a nanoparticle cell.
Abstract: Excitonic solar cells1—including organic, hybrid organic–inorganic and dye-sensitized cells (DSCs)—are promising devices for inexpensive, large-scale solar energy conversion. The DSC is currently the most efficient2 and stable3 excitonic photocell. Central to this device is a thick nanoparticle film that provides a large surface area for the adsorption of light-harvesting molecules. However, nanoparticle DSCs rely on trap-limited diffusion for electron transport, a slow mechanism that can limit device efficiency, especially at longer wavelengths. Here we introduce a version of the dye-sensitized cell in which the traditional nanoparticle film is replaced by a dense array of oriented, crystalline ZnO nanowires. The nanowire anode is synthesized by mild aqueous chemistry and features a surface area up to one-fifth as large as a nanoparticle cell. The direct electrical pathways provided by the nanowires ensure the rapid collection of carriers generated throughout the device, and a full Sun efficiency of 1.5% is demonstrated, limited primarily by the surface area of the nanowire array.

5,308 citations

Journal ArticleDOI
26 Mar 2013-ACS Nano
TL;DR: The properties and advantages of single-, few-, and many-layer 2D materials in field-effect transistors, spin- and valley-tronics, thermoelectrics, and topological insulators, among many other applications are highlighted.
Abstract: Graphene’s success has shown that it is possible to create stable, single and few-atom-thick layers of van der Waals materials, and also that these materials can exhibit fascinating and technologically useful properties. Here we review the state-of-the-art of 2D materials beyond graphene. Initially, we will outline the different chemical classes of 2D materials and discuss the various strategies to prepare single-layer, few-layer, and multilayer assembly materials in solution, on substrates, and on the wafer scale. Additionally, we present an experimental guide for identifying and characterizing single-layer-thick materials, as well as outlining emerging techniques that yield both local and global information. We describe the differences that occur in the electronic structure between the bulk and the single layer and discuss various methods of tuning their electronic properties by manipulating the surface. Finally, we highlight the properties and advantages of single-, few-, and many-layer 2D materials in...

4,123 citations