scispace - formally typeset
Search or ask a question
Author

Joshua E. Goldberger

Bio: Joshua E. Goldberger is an academic researcher from Ohio State University. The author has contributed to research in topics: Germanane & Graphane. The author has an hindex of 38, co-authored 108 publications receiving 15073 citations. Previous affiliations of Joshua E. Goldberger include National Center for Electron Microscopy & Lawrence Berkeley National Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article , a large anomalous transverse thermoelectric effect of ≈2 µV K−1 at room temperature in a kagome antiferromagnet YMn6Sn6 single crystal is obtained.
Abstract: Kagome magnets possess several novel nontrivial topological features owing to the strong correlation between topology and magnetism that extends to their applications in the field of thermoelectricity. Conventional thermoelectric (TE) devices use the Seebeck effect to convert heat into electrical energy. In contrast, transverse thermoelectric devices based on the Nernst effect are attracting recent attention due to their unique transverse geometry, which uses a single material to eliminate the need for a multitude of electrical connections compared to conventional TE devices. Here, a large anomalous transverse thermoelectric effect of ≈2 µV K−1 at room temperature in a kagome antiferromagnet YMn6Sn6 single crystal is obtained. The obtained value is larger than that of state‐of‐the‐art canted antiferromagnetic (AFM) materials and comparable with ferromagnetic systems. The large anomalous Nernst effect (ANE) can be attributed to the net Berry curvature near the Fermi level. Furthermore, the ANE of the AFM YMn6Sn6 exceeds the magnetization scaling relationship of conventional ferromagnets. The results clearly illustrate that AFM material YMn6Sn6 is an ideal topological material for room‐temperature transverse thermoelectric applications.

11 citations

Journal ArticleDOI
TL;DR: In this paper, the magnetic, electronic, and structural properties of van der Waals-layer, Fe-deficient, and high-pressure angle dispersive powder x-ray diffraction were investigated.
Abstract: Two-dimensional van der Waals magnets with multiple functionalities are becoming increasingly important for emerging technologies in spintronics and valleytronics. Application of external pressure is one method to cleanly explore the underlying physical mechanisms of the intrinsic magnetism. In this paper, the magnetic, electronic, and structural properties of van der Waals-layered, Fe-deficient ${\mathrm{Fe}}_{3\ensuremath{-}x}\mathrm{Ge}{\mathrm{Te}}_{2}$ are investigated. Magnetotransport measurements show a monotonic decrease in the Curie temperature $({T}_{C})$ and the magnetic moment with increasing pressure up to 13.9 GPa. The electrical resistance of ${\mathrm{Fe}}_{3\ensuremath{-}x}\mathrm{Ge}{\mathrm{Te}}_{2}$ shows a change from metallic to a seemingly nonmetallic behavior with increasing pressure. High-pressure angle dispersive powder x-ray diffraction shows a monotonic compression of the unit cell and a reduction of the volume by $\ensuremath{\sim}25%$ with no evidence of structural phase changes up to 29.4(4) GPa. We suggest that the decrease in the ${T}_{C}$ due to pressure results from increased intralayer coupling and delocalization that leads to a change in the exchange interaction.

10 citations

Journal ArticleDOI
TL;DR: Most electronic materials exhibit a single dominant charge carrier type, either holes or electrons, along all crystallographic directions as discussed by the authors, but there are a small number of compounds, mostly met...
Abstract: Most electronic materials exhibit a single dominant charge carrier type, either holes or electrons, along all crystallographic directions. However, there are a small number of compounds, mostly met...

10 citations

Journal ArticleDOI
TL;DR: The graphane analogues of group 14 are a unique family of 2D materials due to the necessity of a terminal ligand for stability as discussed by the authors, and changing the surface ligand can lead to nonobvi...
Abstract: The graphane analogues of group 14 are a unique family of 2D materials due to the necessity of a terminal ligand for stability. Here we highlight how changing the surface ligand can lead to nonobvi...

10 citations

Posted ContentDOI
TL;DR: In this paper, the stacking-dependent interlayer exchange interactions in twisted bilayer magnetic crystals have been exploited to obtain non-collinear ground states in a small-twist-angle bilayer CrI3.
Abstract: The emergence of two-dimensional (2D) magnetic crystals and moir\'e engineering has opened the door for devising new magnetic ground states via competing interactions in moir\'e superlattices. Although a suite of interesting phenomena, including multi-flavor magnetic states, noncollinear magnetic states, moir\'e magnon bands and magnon networks, has been predicted, nontrivial magnetic ground states in twisted bilayer magnetic crystals have yet to be realized. Here, by utilizing the stacking-dependent interlayer exchange interactions in CrI3, we demonstrate in small-twist-angle bilayer CrI3 a noncollinear magnetic ground state. It consists of both antiferromagnetic (AF) and ferromagnetic (FM) domains and is a result of the competing interlayer AF coupling in the monoclinic stacking regions of the moir\'e superlattice and the energy cost for forming AF-FM domain walls. Above the critical twist angle of ~ 3{\deg}, the noncollinear state transitions abruptly to a collinear FM ground state. We further show that the noncollinear magnetic state can be controlled by gating through the doping-dependent interlayer AF interaction. Our results demonstrate the possibility of engineering moir\'e magnetism in twisted bilayer magnetic crystals, as well as gate-voltage-controllable high-density magnetic memory storage.

9 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Abstract: Single-layer metal dichalcogenides are two-dimensional semiconductors that present strong potential for electronic and sensing applications complementary to that of graphene.

13,348 citations

Journal ArticleDOI
25 Jul 2013-Nature
TL;DR: With steady improvement in fabrication techniques and using graphene’s springboard, van der Waals heterostructures should develop into a large field of their own.
Abstract: Fabrication techniques developed for graphene research allow the disassembly of many layered crystals (so-called van der Waals materials) into individual atomic planes and their reassembly into designer heterostructures, which reveal new properties and phenomena. Andre Geim and Irina Grigorieva offer a forward-looking review of the potential of layering two-dimensional materials into novel heterostructures held together by weak van der Waals interactions. Dozens of these one-atom- or one-molecule-thick crystals are known. Graphene has already been well studied but others, such as monolayers of hexagonal boron nitride, MoS2, WSe2, graphane, fluorographene, mica and silicene are attracting increasing interest. There are many other monolayers yet to be examined of course, and the possibility of combining graphene with other crystals adds even further options, offering exciting new opportunities for scientific exploration and technological innovation. Research on graphene and other two-dimensional atomic crystals is intense and is likely to remain one of the leading topics in condensed matter physics and materials science for many years. Looking beyond this field, isolated atomic planes can also be reassembled into designer heterostructures made layer by layer in a precisely chosen sequence. The first, already remarkably complex, such heterostructures (often referred to as ‘van der Waals’) have recently been fabricated and investigated, revealing unusual properties and new phenomena. Here we review this emerging research area and identify possible future directions. With steady improvement in fabrication techniques and using graphene’s springboard, van der Waals heterostructures should develop into a large field of their own.

8,162 citations

Journal ArticleDOI
TL;DR: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties are equally important.
Abstract: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties * To whom correspondence should be addressed. Phone, 404-8940292; fax, 404-894-0294; e-mail, mostafa.el-sayed@ chemistry.gatech.edu. † Case Western Reserve UniversitysMillis 2258. ‡ Phone, 216-368-5918; fax, 216-368-3006; e-mail, burda@case.edu. § Georgia Institute of Technology. 1025 Chem. Rev. 2005, 105, 1025−1102

6,852 citations

Journal ArticleDOI
TL;DR: This work introduces a version of the dye-sensitized cell in which the traditional nanoparticle film is replaced by a dense array of oriented, crystalline ZnO nanowires, which features a surface area up to one-fifth as large as a nanoparticle cell.
Abstract: Excitonic solar cells1—including organic, hybrid organic–inorganic and dye-sensitized cells (DSCs)—are promising devices for inexpensive, large-scale solar energy conversion. The DSC is currently the most efficient2 and stable3 excitonic photocell. Central to this device is a thick nanoparticle film that provides a large surface area for the adsorption of light-harvesting molecules. However, nanoparticle DSCs rely on trap-limited diffusion for electron transport, a slow mechanism that can limit device efficiency, especially at longer wavelengths. Here we introduce a version of the dye-sensitized cell in which the traditional nanoparticle film is replaced by a dense array of oriented, crystalline ZnO nanowires. The nanowire anode is synthesized by mild aqueous chemistry and features a surface area up to one-fifth as large as a nanoparticle cell. The direct electrical pathways provided by the nanowires ensure the rapid collection of carriers generated throughout the device, and a full Sun efficiency of 1.5% is demonstrated, limited primarily by the surface area of the nanowire array.

5,308 citations

Journal ArticleDOI
26 Mar 2013-ACS Nano
TL;DR: The properties and advantages of single-, few-, and many-layer 2D materials in field-effect transistors, spin- and valley-tronics, thermoelectrics, and topological insulators, among many other applications are highlighted.
Abstract: Graphene’s success has shown that it is possible to create stable, single and few-atom-thick layers of van der Waals materials, and also that these materials can exhibit fascinating and technologically useful properties. Here we review the state-of-the-art of 2D materials beyond graphene. Initially, we will outline the different chemical classes of 2D materials and discuss the various strategies to prepare single-layer, few-layer, and multilayer assembly materials in solution, on substrates, and on the wafer scale. Additionally, we present an experimental guide for identifying and characterizing single-layer-thick materials, as well as outlining emerging techniques that yield both local and global information. We describe the differences that occur in the electronic structure between the bulk and the single layer and discuss various methods of tuning their electronic properties by manipulating the surface. Finally, we highlight the properties and advantages of single-, few-, and many-layer 2D materials in...

4,123 citations