scispace - formally typeset
Search or ask a question
Author

Joshua E. Goldberger

Bio: Joshua E. Goldberger is an academic researcher from Ohio State University. The author has contributed to research in topics: Germanane & Graphane. The author has an hindex of 38, co-authored 108 publications receiving 15073 citations. Previous affiliations of Joshua E. Goldberger include National Center for Electron Microscopy & Lawrence Berkeley National Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an irreversible interlayer antiferromagnetic (AF) to ferromagnetic transition in atomically thin van der Waals magnetic insulator CrI3 was observed, accompanied by a monoclinic to a rhombohedral stacking order change characterized by polarized Raman spectroscopy.
Abstract: Stacking order can significantly influence the physical properties of two-dimensional (2D) van der Waals materials. The recent isolation of atomically thin magnetic materials opens the door for control and design of magnetism via stacking order. Here we apply hydrostatic pressure up to 2 GPa to modify the stacking order in a prototype van der Waals magnetic insulator CrI3. We observe an irreversible interlayer antiferromagnetic (AF) to ferromagnetic (FM) transition in atomically thin CrI3 by magnetic circular dichroism and electron tunneling measurements. The effect is accompanied by a monoclinic to a rhombohedral stacking order change characterized by polarized Raman spectroscopy. Before the structural change, the interlayer AF coupling energy can be tuned up by nearly 100% by pressure. Our experiment reveals interlayer FM coupling, which is the established ground state in bulk CrI3, but never observed in native exfoliated thin films. The observed correlation between the magnetic ground state and the stacking order is in good agreement with first principles calculations and suggests a route towards nanoscale magnetic textures by moire engineering.

93 citations

Journal ArticleDOI
TL;DR: This Account summarizes recent work on a new family of two-dimensional materials based on sp(3)-hybridized group IV elements that are promising building blocks for a variety of conventional semiconductor applications but also provide a pioneering platform to systematically and rationally control material properties using covalent chemistry.
Abstract: ConspectusThe isolation of graphene has sparked a renaissance in the study of two-dimensional materials. This led to the discovery of new and unique phenomena such as extremely high carrier mobility, thermal conductivity, and mechanical strength not observed in the parent 3D structure. While the emergence of these phenomena has spurred widespread interest in graphene, the paradox between the high-mobility Fermi–Dirac electronic structure and the need for a sizable band gap has challenged its application in traditional semiconductor devices. While graphene is a fascinating and promising material, the limitation of its electronic structure has inspired researchers to explore other 2D materials beyond graphene.In this Account, we summarize our recent work on a new family of two-dimensional materials based on sp3-hybridized group IV elements. Ligand-terminated Si, Ge, and Sn graphane analogues are an emerging and unique class of two-dimensional materials that offer the potential to tailor the structure, stabi...

91 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated spin-wave dynamics in antiferromagnetic CrI3 bilayers using an ultrafast optical pump/magneto-optical Kerr probe technique.
Abstract: Remarkable properties of two-dimensional (2D) layer magnetic materials, which include spin filtering in magnetic tunnel junctions and the gate control of magnetic states, were demonstrated recently1–12 Whereas these studies focused on static properties, dynamic magnetic properties, such as excitation and control of spin waves, remain elusive Here we investigate spin-wave dynamics in antiferromagnetic CrI3 bilayers using an ultrafast optical pump/magneto-optical Kerr probe technique Monolayer WSe2 with a strong excitonic resonance was introduced on CrI3 to enhance the optical excitation of spin waves We identified subterahertz magnetic resonances under an in-plane magnetic field, from which the anisotropy and interlayer exchange fields were determined We further showed tuning of the antiferromagnetic resonances by tens of gigahertz through electrostatic gating Our results shed light on magnetic excitations and spin dynamics in 2D magnetic materials, and demonstrate their potential for applications in ultrafast data storage and processing Gating dependent laser induced spin dynamics in an antiferromagnetic bilayer are observed and explained, with implications for future spintronic applications

82 citations

Journal ArticleDOI
TL;DR: The inclusion of charged amino acids in the peptide amphiphiles disrupted the tendency to bundle and led to significantly enhanced neurite outgrowth.
Abstract: The power of independence: When exhibited on the surface of self-assembling peptide-amphiphile nanofibers, the hydrophobic laminin-derived IKVAV epitope induced nanofiber bundling through interdigitation with neighboring fibers and thus decreased the bioactivity of the resulting materials. The inclusion of charged amino acids in the peptide amphiphiles disrupted the tendency to bundle and led to significantly enhanced neurite outgrowth.

78 citations

Journal ArticleDOI
TL;DR: In this paper, stacking-dependent interlayer exchange interactions in small-twist-angle CrI3 bilayers yield an ordered ground state with coexisting ferromagnetic and antiferromagnetic regions.
Abstract: Moire engineering1–3 of van der Waals magnetic materials4–9 can yield new magnetic ground states via competing interactions in moire superlattices10–13. Theory predicts a suite of interesting phenomena, including multiflavour magnetic states10, non-collinear magnetic states10–13, moire magnon bands and magnon networks14 in twisted bilayer magnetic crystals, but so far such non-trivial magnetic ground states have not emerged experimentally. Here, by utilizing the stacking-dependent interlayer exchange interactions in two-dimensional magnetic materials15–18, we demonstrate a coexisting ferromagnetic (FM) and antiferromagnetic (AF) ground state in small-twist-angle CrI3 bilayers. The FM–AF state transitions to a collinear FM ground state above a critical twist angle of about 3°. The coexisting FM and AF domains result from a competition between the interlayer AF coupling, which emerges in the monoclinic stacking regions of the moire superlattice, and the energy cost for forming FM–AF domain walls. Our observations are consistent with the emergence of a non-collinear magnetic ground state with FM and AF domains on the moire length scale10–13. We further employ the doping dependence of the interlayer AF interaction to control the FM–AF state by electrically gating a bilayer sample. These experiments highlight the potential to create complex magnetic ground states in twisted bilayer magnetic crystals, and may find application in future gate-voltage-controllable high-density magnetic memory storage. In moire superlattice van der Waals magnetic materials, competing interactions emerge and can stabilize new magnetic states. Here, stacking-dependent interlayer exchange interactions in small-twist-angle CrI3 bilayers yield an ordered ground state with coexisting ferromagnetic and antiferromagnetic regions.

69 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Abstract: Single-layer metal dichalcogenides are two-dimensional semiconductors that present strong potential for electronic and sensing applications complementary to that of graphene.

13,348 citations

Journal ArticleDOI
25 Jul 2013-Nature
TL;DR: With steady improvement in fabrication techniques and using graphene’s springboard, van der Waals heterostructures should develop into a large field of their own.
Abstract: Fabrication techniques developed for graphene research allow the disassembly of many layered crystals (so-called van der Waals materials) into individual atomic planes and their reassembly into designer heterostructures, which reveal new properties and phenomena. Andre Geim and Irina Grigorieva offer a forward-looking review of the potential of layering two-dimensional materials into novel heterostructures held together by weak van der Waals interactions. Dozens of these one-atom- or one-molecule-thick crystals are known. Graphene has already been well studied but others, such as monolayers of hexagonal boron nitride, MoS2, WSe2, graphane, fluorographene, mica and silicene are attracting increasing interest. There are many other monolayers yet to be examined of course, and the possibility of combining graphene with other crystals adds even further options, offering exciting new opportunities for scientific exploration and technological innovation. Research on graphene and other two-dimensional atomic crystals is intense and is likely to remain one of the leading topics in condensed matter physics and materials science for many years. Looking beyond this field, isolated atomic planes can also be reassembled into designer heterostructures made layer by layer in a precisely chosen sequence. The first, already remarkably complex, such heterostructures (often referred to as ‘van der Waals’) have recently been fabricated and investigated, revealing unusual properties and new phenomena. Here we review this emerging research area and identify possible future directions. With steady improvement in fabrication techniques and using graphene’s springboard, van der Waals heterostructures should develop into a large field of their own.

8,162 citations

Journal ArticleDOI
TL;DR: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties are equally important.
Abstract: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties * To whom correspondence should be addressed. Phone, 404-8940292; fax, 404-894-0294; e-mail, mostafa.el-sayed@ chemistry.gatech.edu. † Case Western Reserve UniversitysMillis 2258. ‡ Phone, 216-368-5918; fax, 216-368-3006; e-mail, burda@case.edu. § Georgia Institute of Technology. 1025 Chem. Rev. 2005, 105, 1025−1102

6,852 citations

Journal ArticleDOI
TL;DR: This work introduces a version of the dye-sensitized cell in which the traditional nanoparticle film is replaced by a dense array of oriented, crystalline ZnO nanowires, which features a surface area up to one-fifth as large as a nanoparticle cell.
Abstract: Excitonic solar cells1—including organic, hybrid organic–inorganic and dye-sensitized cells (DSCs)—are promising devices for inexpensive, large-scale solar energy conversion. The DSC is currently the most efficient2 and stable3 excitonic photocell. Central to this device is a thick nanoparticle film that provides a large surface area for the adsorption of light-harvesting molecules. However, nanoparticle DSCs rely on trap-limited diffusion for electron transport, a slow mechanism that can limit device efficiency, especially at longer wavelengths. Here we introduce a version of the dye-sensitized cell in which the traditional nanoparticle film is replaced by a dense array of oriented, crystalline ZnO nanowires. The nanowire anode is synthesized by mild aqueous chemistry and features a surface area up to one-fifth as large as a nanoparticle cell. The direct electrical pathways provided by the nanowires ensure the rapid collection of carriers generated throughout the device, and a full Sun efficiency of 1.5% is demonstrated, limited primarily by the surface area of the nanowire array.

5,308 citations

Journal ArticleDOI
26 Mar 2013-ACS Nano
TL;DR: The properties and advantages of single-, few-, and many-layer 2D materials in field-effect transistors, spin- and valley-tronics, thermoelectrics, and topological insulators, among many other applications are highlighted.
Abstract: Graphene’s success has shown that it is possible to create stable, single and few-atom-thick layers of van der Waals materials, and also that these materials can exhibit fascinating and technologically useful properties. Here we review the state-of-the-art of 2D materials beyond graphene. Initially, we will outline the different chemical classes of 2D materials and discuss the various strategies to prepare single-layer, few-layer, and multilayer assembly materials in solution, on substrates, and on the wafer scale. Additionally, we present an experimental guide for identifying and characterizing single-layer-thick materials, as well as outlining emerging techniques that yield both local and global information. We describe the differences that occur in the electronic structure between the bulk and the single layer and discuss various methods of tuning their electronic properties by manipulating the surface. Finally, we highlight the properties and advantages of single-, few-, and many-layer 2D materials in...

4,123 citations