scispace - formally typeset
Search or ask a question
Author

Joshua M. Hardy

Bio: Joshua M. Hardy is an academic researcher from Monash University, Clayton campus. The author has contributed to research in topics: Medicine & Biology. The author has an hindex of 6, co-authored 9 publications receiving 95 citations. Previous affiliations of Joshua M. Hardy include Walter and Eliza Hall Institute of Medical Research & University of Melbourne.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate that despite the large size of the viral RNA genome (~30 kb), infectious full-length cDNA is readily assembled in vitro by a circular polymerase extension reaction (CPER) methodology without the need for technically demanding intermediate steps.
Abstract: The current COVID-19 pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We demonstrate that despite the large size of the viral RNA genome (~30 kb), infectious full-length cDNA is readily assembled in vitro by a circular polymerase extension reaction (CPER) methodology without the need for technically demanding intermediate steps. Overlapping cDNA fragments are generated from viral RNA and assembled together with a linker fragment containing CMV promoter into a circular full-length viral cDNA in a single reaction. Transfection of the circular cDNA into mammalian cells results in the recovery of infectious SARS-CoV-2 virus that exhibits properties comparable to the parental virus in vitro and in vivo. CPER is also used to generate insect-specific Casuarina virus with ~20 kb genome and the human pathogens Ross River virus (Alphavirus) and Norovirus (Calicivirus), with the latter from a clinical sample. Additionally, reporter and mutant viruses are generated and employed to study virus replication and virus-receptor interactions.

59 citations

Journal ArticleDOI
TL;DR: In this paper, crystal structures of the capsid protein from the smallest and simplest known viruses capable of autonomously replicating in animal cells, circoviruses, were used to establish structural and mechanistic insights into capsid morphogenesis and regulation.
Abstract: The assembly and regulation of viral capsid proteins into highly ordered macromolecular complexes is essential for viral replication. Here, we utilize crystal structures of the capsid protein from the smallest and simplest known viruses capable of autonomously replicating in animal cells, circoviruses, to establish structural and mechanistic insights into capsid morphogenesis and regulation. The beak and feather disease virus, like many circoviruses, encode only two genes: a capsid protein and a replication initiation protein. The capsid protein forms distinct macromolecular assemblies during replication and here we elucidate these structures at high resolution, showing that these complexes reverse the exposure of the N-terminal arginine rich domain responsible for DNA binding and nuclear localization. We show that assembly of these complexes is regulated by single-stranded DNA (ssDNA), and provide a structural basis of capsid assembly around single-stranded DNA, highlighting novel binding interfaces distinct from the highly positively charged N-terminal ARM domain.

38 citations

Journal ArticleDOI
TL;DR: How two nested sets of chainmail stabilise the viral head and a beta-hairpin regulates the formation of the robust yet pliable tail, characteristic of siphoviruses is shown.
Abstract: Flagellotropic bacteriophages engage flagella to reach the bacterial surface as an effective means to increase the capture radius for predation. Structural details of these viruses are of great interest given the substantial drag forces and torques they face when moving down the spinning flagellum. We show that the main capsid and auxiliary proteins form two nested chainmails that ensure the integrity of the bacteriophage head. Core stabilising structures are conserved in herpesviruses suggesting their ancestral origin. The structure of the tail also reveals a robust yet pliable assembly. Hexameric rings of the tail-tube protein are braced by the N-terminus and a β-hairpin loop, and interconnected along the tail by the splayed β-hairpins. By contrast, we show that the β-hairpin has an inhibitory role in the tail-tube precursor, preventing uncontrolled self-assembly. Dyads of acidic residues inside the tail-tube present regularly-spaced motifs well suited to DNA translocation into bacteria through the tail.

24 citations

Journal ArticleDOI
TL;DR: In this paper, a chimeric platform based on an insect-specific flavivirus for the safe and rapid structural analysis of pathogenic viruses is presented, revealing two lipid-like ligands within highly conserved pockets of the stem region of envelope protein.
Abstract: The epidemic emergence of relatively rare and geographically isolated flaviviruses adds to the ongoing disease burden of viruses such as dengue. Structural analysis is key to understand and combat these pathogens. Here, we present a chimeric platform based on an insect-specific flavivirus for the safe and rapid structural analysis of pathogenic viruses. We use this approach to resolve the architecture of two neurotropic viruses and a structure of dengue virus at 2.5 A, the highest resolution for an enveloped virion. These reconstructions allow improved modelling of the stem region of the envelope protein, revealing two lipid-like ligands within highly conserved pockets. We show that these sites are essential for viral growth and important for viral maturation. These findings define a hallmark of flavivirus virions and a potential target for broad-spectrum antivirals and vaccine design. We anticipate the chimeric platform to be widely applicable for investigating flavivirus biology. Understanding virus assembly could identify potential drug targets. Here the authors use a safe and efficient method to solve pathogenic flavivirus structures, revealing two lipid-like ligands within highly conserved pockets of the stem region of envelope protein that are important for virus maturation.

22 citations

Journal ArticleDOI
TL;DR: The results from genome sequencing of this phage, YSD1, are presented, confirming its close relationship to the original Chi phage and suggesting candidate proteins to form the tail structure and treatment of phage with the antibodies that bind Y SD1_29 inhibits phage infection of Salmonella.
Abstract: The discovery of a Salmonella-targeting phage from the waterways of the United Kingdom provided an opportunity to address the mechanism by which Chi-like bacteriophage (phage) engages with bacterial flagellae. The long tail fibre seen on Chi-like phages has been proposed to assist the phage particle in docking to a host cell flagellum, but the identity of the protein that generates this fibre was unknown. We present the results from genome sequencing of this phage, YSD1, confirming its close relationship to the original Chi phage and suggesting candidate proteins to form the tail structure. Immunogold labelling in electron micrographs revealed that YSD1_22 forms the main shaft of the tail tube, while YSD1_25 forms the distal part contributing to the tail spike complex. The long curling tail fibre is formed by the protein YSD1_29, and treatment of phage with the antibodies that bind YSD1_29 inhibits phage infection of Salmonella. The host range for YSD1 across Salmonella serovars is broad, but not comprehensive, being limited by antigenic features of the flagellin subunits that make up the Salmonella flagellum, with which YSD1_29 engages to initiate infection.

22 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A microfocus macromolecular crystallography beamline at the Australian Synchrotron is presented.
Abstract: MX2 is an in-vacuum undulator-based crystallography beamline at the 3 GeV Australian Synchrotron. The beamline delivers hard X-rays in the energy range 4.8–21 keV to a focal spot of 22 × 12 µm FWHM (H × V). At 13 keV the flux at the sample is 3.4 × 1012 photons s−1. The beamline endstation allows robotic handling of cryogenic samples via an updated SSRL SAM robot. This beamline is ideal for weakly diffracting hard-to-crystallize proteins, virus particles, protein assemblies and nucleic acids as well as smaller molecules such as inorganic catalysts and organic drug molecules. The beamline is now mature and has enjoyed a full user program for the last nine years. This paper describes the beamline status, plans for its future and some recent scientific highlights.

290 citations

Journal ArticleDOI
TL;DR: It is suggested that, although the replication modules of at least some classes of viruses might descend from primordial selfish genetic elements, bona fide viruses evolved on multiple, independent occasions throughout the course of evolution by the recruitment of diverse host proteins that became major virion components.
Abstract: Viruses are the most abundant biological entities on earth and show remarkable diversity of genome sequences, replication and expression strategies, and virion structures. Evolutionary genomics of viruses revealed many unexpected connections but the general scenario(s) for the evolution of the virosphere remains a matter of intense debate among proponents of the cellular regression, escaped genes, and primordial virus world hypotheses. A comprehensive sequence and structure analysis of major virion proteins indicates that they evolved on about 20 independent occasions, and in some of these cases likely ancestors are identifiable among the proteins of cellular organisms. Virus genomes typically consist of distinct structural and replication modules that recombine frequently and can have different evolutionary trajectories. The present analysis suggests that, although the replication modules of at least some classes of viruses might descend from primordial selfish genetic elements, bona fide viruses evolved on multiple, independent occasions throughout the course of evolution by the recruitment of diverse host proteins that became major virion components.

196 citations

Journal ArticleDOI
TL;DR: The mechanisms behind phage resistance in bacterial pathogens and the physiological consequences of acquiringphage resistance phenotypes are explored and it may be possible to use phages to alter bacterial populations, making them more tractable to current therapeutic strategies.
Abstract: Bacteria that cause life-threatening infections in humans are becoming increasingly difficult to treat. In some instances, this is due to intrinsic and acquired antibiotic resistance, indicating that new therapeutic approaches are needed to combat bacterial pathogens. There is renewed interest in utilizing viruses of bacteria known as bacteriophages (phages) as potential antibacterial therapeutics. However, critics suggest that similar to antibiotics, the development of phage-resistant bacteria will halt clinical phage therapy. Although the emergence of phage-resistant bacteria is likely inevitable, there is a growing body of literature showing that phage selective pressure promotes mutations in bacteria that allow them to subvert phage infection, but with a cost to their fitness. Such fitness trade-offs include reduced virulence, resensitization to antibiotics, and colonization defects. Resistance to phage nucleic acid entry, primarily via cell surface modifications, compromises bacterial fitness during antibiotic and host immune system pressure. In this minireview, we explore the mechanisms behind phage resistance in bacterial pathogens and the physiological consequences of acquiring phage resistance phenotypes. With this knowledge, it may be possible to use phages to alter bacterial populations, making them more tractable to current therapeutic strategies.

96 citations

Journal ArticleDOI
TL;DR: Anelloviruses are obviously mysterious viruses, and their impact on human life is not yet known, but, with no evidence of a disease association, a potential beneficial effect on human health should also be investigated.
Abstract: Anelloviruses are small, single stranded circular DNA viruses. They are extremely diverse and have not been associated with any disease so far. Strikingly, these small entities infect most probably the complete human population, and there are no convincing examples demonstrating viral clearance from infected individuals. The main transmission could be via fecal-oral or airway route, as infections occur at an early age. However, due to the lack of an appropriate culture system, the virus-host interactions remain enigmatic. Anelloviruses are obviously mysterious viruses, and their impact on human life is not yet known, but, with no evidence of a disease association, a potential beneficial effect on human health should also be investigated.

74 citations