scispace - formally typeset
Search or ask a question
Author

Joshua S Greenfeld

Bio: Joshua S Greenfeld is an academic researcher. The author has contributed to research in topics: Digital mapping & Assisted GPS. The author has an hindex of 1, co-authored 1 publications receiving 484 citations.

Papers
More filters
01 Jan 2002
TL;DR: A topologically based matching procedure that was tested with low quality GPS data and the performance of the algorithms was found to produce outstanding results.
Abstract: GPS based navigation and route guidance systems are becoming increasingly popular among bus operators, fleet managers and travelers. To provide this functionality, one has to have a GPS receiver, a digital map of the traveled network and software that can associate (match) the user's position with a location on the digital map. Matching the user's location has to be done even when the GPS location and the underlying digital map have inaccuracies and errors. There are several approaches for solving this map matching task. Some only match the user's location to the nearest street node while others are able to locate the user at specific location on the traveled street segment. In this paper a topologically based matching procedure is presented. The procedure was tested with low quality GPS data to assess its robustness. The performance of the algorithms was found to produce outstanding results

494 citations


Cited by
More filters
Journal ArticleDOI
Yu Zheng1
TL;DR: A systematic survey on the major research into trajectory data mining, providing a panorama of the field as well as the scope of its research topics, and introduces the methods that transform trajectories into other data formats, such as graphs, matrices, and tensors.
Abstract: The advances in location-acquisition and mobile computing techniques have generated massive spatial trajectory data, which represent the mobility of a diversity of moving objects, such as people, vehicles, and animals. Many techniques have been proposed for processing, managing, and mining trajectory data in the past decade, fostering a broad range of applications. In this article, we conduct a systematic survey on the major research into trajectory data mining, providing a panorama of the field as well as the scope of its research topics. Following a road map from the derivation of trajectory data, to trajectory data preprocessing, to trajectory data management, and to a variety of mining tasks (such as trajectory pattern mining, outlier detection, and trajectory classification), the survey explores the connections, correlations, and differences among these existing techniques. This survey also introduces the methods that transform trajectories into other data formats, such as graphs, matrices, and tensors, to which more data mining and machine learning techniques can be applied. Finally, some public trajectory datasets are presented. This survey can help shape the field of trajectory data mining, providing a quick understanding of this field to the community.

1,289 citations

Proceedings ArticleDOI
Paul E. Newson1, John Krumm1
04 Nov 2009
TL;DR: A novel, principled map matching algorithm that uses a Hidden Markov Model (HMM) to find the most likely road route represented by a time-stamped sequence of latitude/longitude pairs, which elegantly accounts for measurement noise and the layout of the road network.
Abstract: The problem of matching measured latitude/longitude points to roads is becoming increasingly important This paper describes a novel, principled map matching algorithm that uses a Hidden Markov Model (HMM) to find the most likely road route represented by a time-stamped sequence of latitude/longitude pairs The HMM elegantly accounts for measurement noise and the layout of the road network We test our algorithm on ground truth data collected from a GPS receiver in a vehicle Our test shows how the algorithm breaks down as the sampling rate of the GPS is reduced We also test the effect of increasing amounts of additional measurement noise in order to assess how well our algorithm could deal with the inaccuracies of other location measurement systems, such as those based on WiFi and cell tower multilateration We provide our GPS data and road network representation as a standard test set for other researchers to use in their map matching work

887 citations

Proceedings ArticleDOI
04 Nov 2009
TL;DR: The results show that the ST-matching algorithm significantly outperform incremental algorithm in terms of matching accuracy for low-sampling trajectories and when compared with AFD-based global algorithm, ST-Matching also improves accuracy as well as running time.
Abstract: Map-matching is the process of aligning a sequence of observed user positions with the road network on a digital map. It is a fundamental pre-processing step for many applications, such as moving object management, traffic flow analysis, and driving directions. In practice there exists huge amount of low-sampling-rate (e.g., one point every 2--5 minutes) GPS trajectories. Unfortunately, most current map-matching approaches only deal with high-sampling-rate (typically one point every 10--30s) GPS data, and become less effective for low-sampling-rate points as the uncertainty in data increases. In this paper, we propose a novel global map-matching algorithm called ST-Matching for low-sampling-rate GPS trajectories. ST-Matching considers (1) the spatial geometric and topological structures of the road network and (2) the temporal/speed constraints of the trajectories. Based on spatio-temporal analysis, a candidate graph is constructed from which the best matching path sequence is identified. We compare ST-Matching with the incremental algorithm and Average-Frechet-Distance (AFD) based global map-matching algorithm. The experiments are performed both on synthetic and real dataset. The results show that our ST-matching algorithm significantly outperform incremental algorithm in terms of matching accuracy for low-sampling trajectories. Meanwhile, when compared with AFD-based global algorithm, ST-Matching also improves accuracy as well as running time.

817 citations

Journal ArticleDOI
TL;DR: The constraints and limitations of existing map matching algorithms are uncovered by an in-depth literature review and some ideas for monitoring the integrity of map-matching algorithms are presented.
Abstract: Map-matching algorithms integrate positioning data with spatial road network data (roadway centrelines) to identify the correct link on which a vehicle is travelling and to determine the location of a vehicle on a link. A map-matching algorithm could be used as a key component to improve the performance of systems that support the navigation function of intelligent transport systems (ITS). The required horizontal positioning accuracy of such ITS applications is in the range of 1 m to 40 m (95%) with relatively stringent requirements placed on integrity (quality), continuity and system availability. A number of map-matching algorithms have been developed by researchers around the world using different techniques such as topological analysis of spatial road network data, probabilistic theory, Kalman filter, fuzzy logic, and belief theory. The performances of these algorithms have improved over the years due to the application of advanced techniques in the map matching processes and improvements in the quality of both positioning and spatial road network data. However, these algorithms are not always capable of supporting ITS applications with high required navigation performance, especially in difficult and complex environments such as dense urban areas. This suggests that research should be directed at identifying any constraints and limitations of existing map matching algorithms as a prerequisite for the formulation of algorithm improvements. The objectives of this paper are thus to uncover the constraints and limitations by an in-depth literature review and to recommend ideas to address them. This paper also highlights the potential impacts of the forthcoming European Galileo system and the European Geostationary Overlay Service (EGNOS) on the performance of map matching algorithms. Although not addressed in detail, the paper also presents some ideas for monitoring the integrity of map-matching algorithms. The map-matching algorithms considered in this paper are generic and do not assume knowledge of ‘future’ information (i.e. based on either cost or time). Clearly, such data would result in relatively simple map-matching algorithms.

799 citations

Proceedings Article
30 Aug 2005
TL;DR: This work presents three algorithms that consider especially the trajectory nature of the data rather than simply the current position as in the typical map-matching case, and proposes an incremental algorithm that matches consecutive portions of the trajectory to the road network.
Abstract: Vehicle tracking data is an essential "raw" material for a broad range of applications such as traffic management and control, routing, and navigation. An important issue with this data is its accuracy. The method of sampling vehicular movement using GPS is affected by two error sources and consequently produces inaccurate trajectory data. To become useful, the data has to be related to the underlying road network by means of map matching algorithms. We present three such algorithms that consider especially the trajectory nature of the data rather than simply the current position as in the typical map-matching case. An incremental algorithm is proposed that matches consecutive portions of the trajectory to the road network, effectively trading accuracy for speed of computation. In contrast, the two global algorithms compare the entire trajectory to candidate paths in the road network. The algorithms are evaluated in terms of (i) their running time and (ii) the quality of their matching result. Two novel quality measures utilizing the Frechet distance are introduced and subsequently used in an experimental evaluation to assess the quality of matching real tracking data to a road network.

633 citations