scispace - formally typeset
Search or ask a question
Author

Josué D. Mota-Morales

Bio: Josué D. Mota-Morales is an academic researcher from National Autonomous University of Mexico. The author has contributed to research in topics: Deep eutectic solvent & Polymerization. The author has an hindex of 21, co-authored 53 publications receiving 1321 citations. Previous affiliations of Josué D. Mota-Morales include Louisiana State University & Spanish National Research Council.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the antibacterial activity of the resulting nanocomposites in the form of films is studied against two bacteria, Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli.

210 citations

Journal ArticleDOI
TL;DR: In this article, the role of DESs as solvents where the polymerization takes place, either in the same phase or in an emulsion, is described with emphasis on their green aspects.

163 citations

Journal ArticleDOI
TL;DR: Deep Eutectic Solvents based upon mixtures of Acrylic Acid or Methacrylic Acid and Choline Chloride demonstrated superior performance than regular organic solvents and even ionic liquids for frontal polymerizations (FPs).

113 citations

Journal ArticleDOI
TL;DR: Though the ability of silver nanoparticles to control an ongoing RVFV infection in the conditions tested was limited, the incubation of virus with Argovit before the infection led to a reduction of the infectivity titers both in vitro and in vivo.

102 citations

Journal ArticleDOI
TL;DR: In this paper, carbon nanotubes were used as an inert filler in the frontal polymerization (FP) of poly(acrylic acid) (PAA) and poly(methacrylic acids) (MCA) in order to obtain macroporosity and high biocompatibility.
Abstract: Deep Eutectic Solvents (DESs) formed between Acrylic Acid (AA) and Choline Chloride (CCl) exhibit certain properties of ionic liquids (e.g. high viscosity) that make them suitable for frontal polymerization (FP). The use of DESs not only as a monomer but also as the solvent prevents the use of additional solvents (i.e. typically of organic nature) and offers a green tool for the synthesis of functional composites. We have recently explored this approach for the preparation of poly(acrylic acid) (PAA) and poly(methacrylic acid). In this work, we have taken advantage of the outstanding capability of DESs to solubilize and/or disperse a number of substances to incorporate – in a homogeneous fashion – carbon nanotubes (in this particular case, N-doped MWCNT – CNxMWCNTs) in the polymerizable DES. Interestingly, CNxMWCNTs also played the role of an inert filler in FP. The resulting PAA–CNxMWCNT composites exhibited some distinct features as compared to previous PAA also obtained via DES-assisted FP. For instance, PAA–CNxMWCNT composites can undergo swelling depending on the pH, as bare PAA. However, the presence of CNxMWCNTs allows the formation of a macroporous structure after submission to a freeze-drying process, the achievement of which was not possible in bare PAA. The combination of structural (e.g. macroporosity) and functional (e.g. stimuli responsive) properties exhibited by these materials besides an eventually high biocompatibility – coming from the green character of the DES-assisted synthesis – should make the resulting macroporous PAA–CNxMWCNT composites excellent candidates for their future application as biomaterials.

89 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: All works discussed in this review aim at demonstrating that Deep Eutectic Solvents not only allow the design of eco-efficient processes but also open a straightforward access to new chemicals and materials.
Abstract: Within the framework of green chemistry, solvents occupy a strategic place. To be qualified as a green medium, these solvents have to meet different criteria such as availability, non-toxicity, biodegradability, recyclability, flammability, and low price among others. Up to now, the number of available green solvents are rather limited. Here we wish to discuss a new family of ionic fluids, so-called Deep Eutectic Solvents (DES), that are now rapidly emerging in the current literature. A DES is a fluid generally composed of two or three cheap and safe components that are capable of self-association, often through hydrogen bond interactions, to form a eutectic mixture with a melting point lower than that of each individual component. DESs are generally liquid at temperatures lower than 100 °C. These DESs exhibit similar physico-chemical properties to the traditionally used ionic liquids, while being much cheaper and environmentally friendlier. Owing to these remarkable advantages, DESs are now of growing interest in many fields of research. In this review, we report the major contributions of DESs in catalysis, organic synthesis, dissolution and extraction processes, electrochemistry and material chemistry. All works discussed in this review aim at demonstrating that DESs not only allow the design of eco-efficient processes but also open a straightforward access to new chemicals and materials.

3,325 citations

Journal ArticleDOI
TL;DR: This review aims to describe the different synthetic processes used for preparation of these three-dimensional architectures and/or aerogels containing either any or both allotropes, and the different fields of application in which the particular structure of these materials provided a significant enhancement in the efficacy as compared to their two-dimensional analogues or even opened the path to novel applications.
Abstract: Carbon nanotubes and graphene are some of the most intensively explored carbon allotropes in materials science. This interest mainly resides in their unique properties with electrical conductivities as high as 104 S cm−1, thermal conductivities as high as 5000 W m−1 K and superior mechanical properties with elastic moduli on the order of 1 TPa for both of them. The possibility to translate the individual properties of these monodimensional (e.g. carbon nanotubes) and bidimensional (e.g. graphene) building units into two-dimensional free-standing thick and thin films has paved the way for using these allotropes in a number of applications (including photocatalysis, electrochemistry, electronics and optoelectronics, among others) as well as for the preparation of biological and chemical sensors. More recently and while recognizing the tremendous interest of these two-dimensional structures, researchers are noticing that the performance of certain devices can experience a significant enhancement by the use of three-dimensional architectures and/or aerogels because of the increase of active material per projected area. This is obviously the case as long as the nanometre-sized building units remain accessible so that the concept of hierarchical three-dimensional organization is critical to guarantee the mass transport and, as consequence, performance enhancement. Thus, this review aims to describe the different synthetic processes used for preparation of these three-dimensional architectures and/or aerogels containing either any or both allotropes, and the different fields of application in which the particular structure of these materials provided a significant enhancement in the efficacy as compared to their two-dimensional analogues or even opened the path to novel applications. The unprecedented compilation of information from both CNT- and graphene-based three-dimensional architectures and/or aerogels in a single revision is also of interest because it allows a straightforward comparison between the particular features provided by each allotrope.

1,032 citations

Journal ArticleDOI
TL;DR: A detailed review of the current literature reveals the lack of predictive understanding of the microscopic mechanisms that govern the structure-property relationships in deep eutectic solvents, and highlights recent research efforts to elucidate the next steps needed to develop a fundamental framework needed for a deeper understanding.
Abstract: Deep eutectic solvents (DESs) are an emerging class of mixtures characterized by significant depressions in melting points compared to those of the neat constituent components. These materials are promising for applications as inexpensive "designer" solvents exhibiting a host of tunable physicochemical properties. A detailed review of the current literature reveals the lack of predictive understanding of the microscopic mechanisms that govern the structure-property relationships in this class of solvents. Complex hydrogen bonding is postulated as the root cause of their melting point depressions and physicochemical properties; to understand these hydrogen bonded networks, it is imperative to study these systems as dynamic entities using both simulations and experiments. This review emphasizes recent research efforts in order to elucidate the next steps needed to develop a fundamental framework needed for a deeper understanding of DESs. It covers recent developments in DES research, frames outstanding scientific questions, and identifies promising research thrusts aligned with the advancement of the field toward predictive models and fundamental understanding of these solvents.

911 citations

Journal ArticleDOI
TL;DR: This review focuses on NADES properties and applications in NP research and identifies potential areas for future studies of (NA)DES by evaluating relevant applications, including their use as extraction and chromatographic media as well as their biomedical relevance.
Abstract: As functional liquid media, natural deep eutectic solvent (NADES) species can dissolve natural or synthetic chemicals of low water solubility. Moreover, the special properties of NADES, such as biodegradability and biocompatibility, suggest that they are alternative candidates for concepts and applications involving some organic solvents and ionic liquids. Owing to the growing comprehension of the eutectic mechanisms and the advancing interest in the natural eutectic phenomenon, many NADES applications have been developed in the past several years. However, unlike organic solvents, the basic structural unit of NADES media primarily depends on the intermolecular interactions among their components. This makes NADES matrices readily influenced by various factors, such as water content, temperature, and component ratio and, thus, extends the metabolomic challenge of natural products (NPs). To enhance the understanding of the importance of NADES in biological systems, this review focuses on NADES properties a...

581 citations