scispace - formally typeset
Search or ask a question
Author

Joumana Farah

Bio: Joumana Farah is an academic researcher from Lebanese University. The author has contributed to research in topics: Resource allocation & Wireless sensor network. The author has an hindex of 16, co-authored 107 publications receiving 918 citations. Previous affiliations of Joumana Farah include Holy Spirit University of Kaslik.


Papers
More filters
Journal ArticleDOI
TL;DR: An original method for target tracking in wireless sensor networks that combines machine learning with a Kalman filter to estimate instantaneous positions of a moving target through radio-fingerprints of received signal strength indicators.
Abstract: This paper describes an original method for target tracking in wireless sensor networks. The proposed method combines machine learning with a Kalman filter to estimate instantaneous positions of a moving target. The target's accelerations, along with information from the network, are used to obtain an accurate estimation of its position. To this end, radio-fingerprints of received signal strength indicators (RSSIs) are first collected over the surveillance area. The obtained database is then used with machine learning algorithms to compute a model that estimates the position of the target using only RSSI information. This model leads to a first position estimate of the target under investigation. The kernel-based ridge regression and the vector-output regularized least squares are used in the learning process. The Kalman filter is used afterward to combine predictions of the target's positions based on acceleration information with the first estimates, leading to more accurate ones. The performance of the method is studied for different scenarios and a thorough comparison with well-known algorithms is also provided.

100 citations

Proceedings ArticleDOI
11 May 2015
TL;DR: It is shown that the proposed strategy for resource allocation improves both the spectral efficiency and the cell-edge user throughput and also proves to be robust in the case of communications in crowded areas.
Abstract: This paper investigates a new strategy for radio resource allocation applying a non-orthogonal multiple access (NOMA) scheme. It calls for the cohabitation of users in the power domain at the transmitter side and for successive interference canceller (SIC) at the receiver side. Taking into account multi-user scheduling, subband assignment and transmit power allocation, a hybrid NOMA scheme is introduced. Adaptive switching to orthogonal signaling (OS) is performed whenever the non-orthogonal cohabitation in the power domain does not improve the achieved data rate per subband. In addition, a new power allocation technique based on waterfilling is introduced to improve the total achieved system throughput. We show that the proposed strategy for resource allocation improves both the spectral efficiency and the cell-edge user throughput. It also proves to be robust in the case of communications in crowded areas.

84 citations

Journal ArticleDOI
TL;DR: A novel unequal error protection technique that enhances the video transmission quality over wireless networks and it is demonstrated that the gain in the system performances can reach 1.5 dB without any significant increase in the transmission rate or the receiver complexity.
Abstract: In this paper, we present a novel unequal error protection technique that enhances the video transmission quality over wireless networks. The case of application considered is a UMTS/TDD transmission system for H263 compressed and turbo-coded video sequences. The overall redundancy added to the compressed stream is non-uniformly distributed between the succeeding video frames in order to minimize the mean distortion over the transmitted sequence. The repartition of the redundancy on the video stream is optimized using an analytical approach which aims to alleviate the error propagation along the sequence. Different puncturing patterns of the rate 1 3 turbo-coder were considered in our simulations. The results obtained here are compared to those with a classical equal error protection scheme. We demonstrate that the gain in the system performances can reach 1.5 dB (in terms of the mean peak signal-to-noise ratio) without any significant increase in the transmission rate or the receiver complexity.

47 citations

Journal ArticleDOI
TL;DR: The proposed strategies for resource allocation can improve both the spectral efficiency and the cell-edge user throughput, especially when compared to previous schemes employing either orthogonal signaling or NOMA with static inter-subband power allocation.
Abstract: This paper investigates several new strategies for the allocation of radio resources (bandwidth and transmission power) using a non-orthogonal multiple access (NOMA) scheme with successive interference cancellation (SIC) in a cellular downlink system. In non-orthogonal access with SIC, the same subband is allocated to multiple users, which requires elaborate multiuser scheduling and subband assignment techniques, compared to orthogonal multiplexing. While taking into account various design issues, we propose and compare several optimum and suboptimum power allocation schemes. These are jointly implemented with multiple user scheduling strategies. Besides, a minimization of the total amount of used bandwidth is targeted. Also, to increase the total achieved system throughput, a hybrid orthogonal-non orthogonal scheme is introduced. This hybrid scheme enables a dynamic switching to orthogonal signaling whenever the non-orthogonal cohabitation in the power domain does not improve the achieved data rate per subband. Extensive simulation results show that the proposed strategies for resource allocation can improve both the spectral efficiency and the cell-edge user throughput, especially when compared to previous schemes employing either orthogonal signaling or NOMA with static inter-subband power allocation. They also prove to be robust in the context of crowded areas.

44 citations

Journal ArticleDOI
TL;DR: A low-complexity waterfilling-based power allocation (PA) technique, incorporated within the proportional fairness scheduler, is proposed and applied to a non-orthogonal multiple access (NOMA) scheme in a cellular downlink system.
Abstract: In this letter, a low-complexity waterfilling-based power allocation (PA) technique, incorporated within the proportional fairness scheduler, is proposed and applied to a non-orthogonal multiple access (NOMA) scheme in a cellular downlink system. The aim of the proposed joint PA and scheduling scheme is to maximize the achieved average throughput through a quasi-optimal repartition of the transmit power among subbands, while guaranteeing a high level of fairness in resource allocation. Extensive simulation results show that the proposed technique enhances both system capacity and user fairness, when compared to either orthogonal signaling or NOMA with static PA.

44 citations


Cited by
More filters
Book Chapter
01 Jan 2017
TL;DR: Considering the trend in 5G, achieving significant gains in capacity and system throughput performance is a high priority requirement in view of the recent exponential increase in the volume of mobile traffic and the proposed system should be able to support enhanced delay-sensitive high-volume services.
Abstract: Radio access technologies for cellular mobile communications are typically characterized by multiple access schemes, e.g., frequency division multiple access (FDMA), time division multiple access (TDMA), code division multiple access (CDMA), and OFDMA. In the 4th generation (4G) mobile communication systems such as Long-Term Evolution (LTE) (Au et al., Uplink contention based SCMA for 5G radio access. Globecom Workshops (GC Wkshps), 2014. doi:10.1109/GLOCOMW.2014.7063547) and LTE-Advanced (Baracca et al., IEEE Trans. Commun., 2011. doi:10.1109/TCOMM.2011.121410.090252; Barry et al., Digital Communication, Kluwer, Dordrecht, 2004), standardized by the 3rd Generation Partnership Project (3GPP), orthogonal multiple access based on OFDMA or single carrier (SC)-FDMA is adopted. Orthogonal multiple access was a reasonable choice for achieving good system-level throughput performance with simple single-user detection. However, considering the trend in 5G, achieving significant gains in capacity and system throughput performance is a high priority requirement in view of the recent exponential increase in the volume of mobile traffic. In addition the proposed system should be able to support enhanced delay-sensitive high-volume services such as video streaming and cloud computing. Another high-level target of 5G is reduced cost, higher energy efficiency and robustness against emergencies.

635 citations

Journal ArticleDOI
TL;DR: A comprehensive survey on UAV communication towards 5G/B5G wireless networks is presented in this article, where UAVs are expected to be an important component of the upcoming wireless networks that can potentially facilitate wireless broadcast and support high rate transmissions.
Abstract: Providing ubiquitous connectivity to diverse device types is the key challenge for 5G and beyond 5G (B5G). Unmanned aerial vehicles (UAVs) are expected to be an important component of the upcoming wireless networks that can potentially facilitate wireless broadcast and support high rate transmissions. Compared to the communications with fixed infrastructure, UAV has salient attributes, such as flexible deployment, strong line-of-sight (LoS) connection links, and additional design degrees of freedom with the controlled mobility. In this paper, a comprehensive survey on UAV communication towards 5G/B5G wireless networks is presented. We first briefly introduce essential background and the space-air-ground integrated networks, as well as discuss related research challenges faced by the emerging integrated network architecture. We then provide an exhaustive review of various 5G techniques based on UAV platforms, which we categorize by different domains including physical layer, network layer, and joint communication, computing and caching. In addition, a great number of open research problems are outlined and identified as possible future research directions.

566 citations

Journal ArticleDOI
TL;DR: This paper proposes a low-complexity suboptimal algorithm, which includes energy-efficient subchannel assignment and power proportional factors determination for subchannel multiplexed users and proposes a novel power allocation across subchannels to further maximize energy efficiency.
Abstract: Non-orthogonal multiple access (NOMA) is a promising technique for the fifth generation mobile communication due to its high spectral efficiency. By applying superposition coding and successive interference cancellation techniques at the receiver, multiple users can be multiplexed on the same subchannel in NOMA systems. Previous works focus on subchannel assignment and power allocation to achieve the maximization of sum rate; however, the energy-efficient resource allocation problem has not been well studied for NOMA systems. In this paper, we aim to optimize subchannel assignment and power allocation to maximize the energy efficiency for the downlink NOMA network. Assuming perfect knowledge of the channel state information at base station, we propose a low-complexity suboptimal algorithm, which includes energy-efficient subchannel assignment and power proportional factors determination for subchannel multiplexed users. We also propose a novel power allocation across subchannels to further maximize energy efficiency. Since both optimization problems are non-convex, difference of convex programming is used to transform and approximate the original non-convex problems to convex optimization problems. Solutions to the resulting optimization problems can be obtained by solving the convex sub-problems iteratively. Simulation results show that the NOMA system equipped with the proposed algorithms yields much better sum rate and energy efficiency performance than the conventional orthogonal frequency division multiple access scheme.

411 citations

Journal ArticleDOI
TL;DR: This paper analyzes the ME structure in HEVC and proposes a parallel framework to decouple ME for different partitions on many-core processors and achieves more than 30 and 40 times speedup for 1920 × 1080 and 2560 × 1600 video sequences, respectively.
Abstract: High Efficiency Video Coding (HEVC) provides superior coding efficiency than previous video coding standards at the cost of increasing encoding complexity. The complexity increase of motion estimation (ME) procedure is rather significant, especially when considering the complicated partitioning structure of HEVC. To fully exploit the coding efficiency brought by HEVC requires a huge amount of computations. In this paper, we analyze the ME structure in HEVC and propose a parallel framework to decouple ME for different partitions on many-core processors. Based on local parallel method (LPM), we first use the directed acyclic graph (DAG)-based order to parallelize coding tree units (CTUs) and adopt improved LPM (ILPM) within each CTU (DAGILPM), which exploits the CTU-level and prediction unit (PU)-level parallelism. Then, we find that there exist completely independent PUs (CIPUs) and partially independent PUs (PIPUs). When the degree of parallelism (DP) is smaller than the maximum DP of DAGILPM, we process the CIPUs and PIPUs, which further increases the DP. The data dependencies and coding efficiency stay the same as LPM. Experiments show that on a 64-core system, compared with serial execution, our proposed scheme achieves more than 30 and 40 times speedup for 1920 × 1080 and 2560 × 1600 video sequences, respectively.

366 citations

Journal ArticleDOI
TL;DR: The state-of-the-art and the potentials of these ten enabling technologies are extensively surveyed, and the challenges and limitations for each technology are treated in depth, while the possible solutions are highlighted.

365 citations