scispace - formally typeset
Search or ask a question
Author

Jovan Maksimovic

Bio: Jovan Maksimovic is an academic researcher from Swinburne University of Technology. The author has contributed to research in topics: Laser & Femtosecond. The author has an hindex of 6, co-authored 22 publications receiving 110 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This work applied direct laser-induced periodic surface structuring to drive the phase transition of amorphous silicon into nanocrystalline Si imprinted as regular arrangement of Si nanopillars passivated with a SiO2 layer to form diverse hierarchical LIPSSs.
Abstract: Here, we applied direct laser-induced periodic surface structuring to drive the phase transition of amorphous silicon (a-Si) into nanocrystalline (nc) Si imprinted as regular arrangement of Si nanopillars passivated with a SiO2 layer. By varying the laser beam scanning speed at a fixed pulse energy, we successfully tailored the resulting unique surface morphology of the formed LIPSSs that change from ordered arrangement of conical protrusions to highly uniform surface gratings, where sub-wavelength scale ripples decorate the valleys between near-wavelength scale ridges. Along with the surface morphology, the nc-Si/SiO2 volume ratio can also be controlled via laser processing parameters allowing the tailoring of the optical properties of the produced textured surfaces to achieve anti-reflection performance or partial transmission in the visible spectral range. Diverse hierarchical LIPSSs can be fabricated and replicated over large-scale areas opening a pathway for various applications including optical sensors, nanoscale temperature management, and solar light harvesting. By taking advantage of good wettability, enlarged surface area and remarkable light-trapping characteristics of the produced hierarchical morphologies, we demonstrated the first LIPSS-based surface enhanced fluorescent sensor that allowed the identification of metal cations providing a sub-nM detection limit unachievable by conventional fluorescence measurements in solutions.

59 citations

Journal ArticleDOI
TL;DR: This study demonstrates a single camera shot, lensless, interferenceless, motionless, non-scanning, space, spectrum, and time resolved five-dimensional incoherent imaging technique using tailored chaotic waves with quasi-random intensity and phase distributions.
Abstract: Multispectral imaging technology is a valuable scientific tool for various applications in astronomy, remote sensing, molecular fingerprinting, and fluorescence imaging. In this study, we demonstrate a single camera shot, lensless, interferenceless, motionless, non-scanning, space, spectrum, and time resolved five-dimensional incoherent imaging technique using tailored chaotic waves with quasi-random intensity and phase distributions. Chaotic waves can distinctly encode spatial and spectral information of an object in single self-interference intensity distribution. In this study, a tailored chaotic wave with a nearly pure phase function and lowest correlation noise is generated using a quasi-random array of pinholes. A unique sequence of signal processing techniques is applied to extract all possible spatial and spectral channels with the least entropy. The depth-wavelength reciprocity is exploited to see colour from depth and depth from colour and the physics of beam propagation is exploited to see at one depth by calibrating at another.

38 citations

Journal ArticleDOI
TL;DR: Lucy-Richardson-Rosen algorithm has been proposed in this article for 3D image reconstruction without two-beam interference (TBII) by using deterministic fields.
Abstract: In recent years, there has been a significant transformation in the field of incoherent imaging with new possibilities of compressing three-dimensional (3D) information into a two-dimensional intensity distribution without two-beam interference (TBI). Most of the incoherent 3D imagers without TBI are based on scattering by a random phase mask exhibiting sharp autocorrelation and low cross-correlation along the depth. Consequently, during reconstruction, high lateral and axial resolutions are obtained. Imaging based on scattering requires an astronomical photon budget and is therefore precluded in many power-sensitive applications. In this study, a proof-of-concept 3D imaging method without TBI using deterministic fields has been demonstrated. A new reconstruction method called the Lucy-Richardson-Rosen algorithm has been developed for this imaging concept. We believe that the proposed approach will cause a paradigm-shift in the current state-of-the-art incoherent imaging, fluorescence microscopy, mid-infrared fingerprinting, astronomical imaging, and fast object recognition applications.

29 citations

Journal ArticleDOI
TL;DR: In this paper, femtosecond laser writing in silicon carbide and gallium nitride was applied to generate vacancy-related color centers, giving rise to photoluminescence from the visible to the infrared.
Abstract: Color centers in silicon carbide are relevant for applications in quantum technologies as they can produce single photon sources or can be used as spin qubits and in quantum sensing applications. Here, we have applied femtosecond laser writing in silicon carbide and gallium nitride to generate vacancy-related color centers, giving rise to photoluminescence from the visible to the infrared. Using a 515 nm wavelength 230 fs pulsed laser, we produce large arrays of silicon vacancy defects in silicon carbide with a high localization within the confocal diffraction limit of 500 nm and with minimal material damage. The number of color centers formed exhibited power-law scaling with the laser fabrication energy indicating that the color centers are created by photoinduced ionization. This work highlights the simplicity and flexibility of laser fabrication of color center arrays in relevant materials for quantum applications.

27 citations

Journal ArticleDOI
TL;DR: This method can be adopted for creation of polarization optical elements and fabrication of spatially varying birefringent patterns for optical vortex generation.
Abstract: Birefringence of 3 × 10 − 3 is demonstrated inside cross-sectional regions of 100 μ m, inscribed by axially stretched Bessel-beam-like fs-laser pulses along the c-axis inside sapphire. A high birefringence and retardance of λ / 4 at mid-visible spectral range (green) can be achieved using stretched beams with axial extension of 30–40 μ m. Chosen conditions of laser-writing ensure that there are no formations of self-organized nano-gratings. This method can be adopted for creation of polarization optical elements and fabrication of spatially varying birefringent patterns for optical vortex generation.

19 citations


Cited by
More filters
01 Jan 2016
TL;DR: In this paper, the authors present the principles of optics electromagnetic theory of propagation interference and diffraction of light, which can be used to find a good book with a cup of coffee in the afternoon, instead of facing with some infectious bugs inside their computer.
Abstract: Thank you for reading principles of optics electromagnetic theory of propagation interference and diffraction of light. As you may know, people have search hundreds times for their favorite novels like this principles of optics electromagnetic theory of propagation interference and diffraction of light, but end up in harmful downloads. Rather than enjoying a good book with a cup of coffee in the afternoon, instead they are facing with some infectious bugs inside their computer.

2,213 citations

Proceedings Article
01 Jan 2012
TL;DR: Quantitative phase imaging, i.e., measuring the map of pathlength shifts due to the specimen of interest, has been developing rapidly over the past decade with main methods and exciting applications to biomedicine reviewed.
Abstract: Quantitative phase imaging, i.e., measuring the map of pathlength shifts due to the specimen of interest, has been developing rapidly over the past decade. The main methods and exciting applications to biomedicine will be reviewed.

297 citations

15 Jul 2006
TL;DR: IR spectra of PZ stroma suggested that these cells are structurally more different to CaP than those located in the TZ, indicating that TZ epithelial cells are more likely to exhibit what may be a susceptibility-to-adenocarcinoma spectral signature.
Abstract: The prostate gland is conventionally divided into zones or regions. This morphology is of clinical significance as prostate cancer (CaP) occurs mainly in the peripheral zone (PZ). We obtained tissue sets consisting of paraffin-embedded blocks of cancer-free transition zone (TZ) and PZ and adjacent CaP from patients (n = 6) who had undergone radical retropubic prostatectomy; a seventh tissue set of snap-frozen PZ and TZ was obtained from a CaP-free gland removed after radical cystoprostatectomy. Paraffin-embedded tissue slices were sectioned (10-mum thick) and mounted on suitable windows to facilitate infrared (IR) spectra acquisition before being dewaxed and air dried; cryosections were dessicated on BaF(2) windows. Spectra were collected employing synchrotron Fourier-transform infrared (FTIR) microspectroscopy in transmission mode or attenuated total reflection-FTIR (ATR) spectroscopy. Epithelial cell and stromal IR spectra were subjected to principal component analysis to determine whether wavenumber-absorbance relationships expressed as single points in "hyperspace" might on the basis of multivariate distance reveal biophysical differences between cells in situ in different tissue regions. After spectroscopic analysis, plotted clusters and their loadings curves highlighted marked variation in the spectral region containing DNA/RNA bands ( approximately 1490-1000 cm(-1)). By interrogating the intrinsic dimensionality of IR spectra in this small cohort sample, we found that TZ epithelial cells appeared to align more closely with those of CaP while exhibiting marked structural differences compared to PZ epithelium. IR spectra of PZ stroma also suggested that these cells are structurally more different to CaP than those located in the TZ. Because the PZ exhibits a higher occurrence of CaP, other factors (e.g., hormone exposure) may modulate the growth kinetics of initiated epithelial cells in this region. The results of this pilot study surprisingly indicate that TZ epithelial cells are more likely to exhibit what may be a susceptibility-to-adenocarcinoma spectral signature. Thus, IR spectroscopy on its own may not be sufficient to identify premalignant prostate epithelial cells most likely to progress to CaP.

136 citations

Journal ArticleDOI
TL;DR: Investigation of TESs in a PhC nanocavity array in the Su–Schrieffer–Heeger model finds evidence of lasing from sources even smaller than the wavelength of light, which could enable further minimising of photonic devices and have applications for quantum computing.
Abstract: Topological photonics have provided new insights for the manipulation of light. Analogous to electrons in topological insulators, photons travelling through the surface of a topological photonic structure or the interface of two photonic structures with different topological phases are free from backscattering caused by structural imperfections or disorder. This exotic nature of the topological edge state (TES) is truly beneficial for nanophotonic devices that suffer from structural irregularities generated during device fabrication. Although various topological states and device concepts have been demonstrated in photonic systems, lasers based on a topological photonic crystal (PhC) cavity array with a wavelength-scale modal volume have not been explored. We investigated TESs in a PhC nanocavity array in the Su-Schrieffer-Heeger model. Upon optical excitation, the topological PhC cavity array realised using an InP-based multiple-quantum-well epilayer spontaneously exhibits lasing peaks at the topological edge and bulk states. TES characteristics, including the modal robustness caused by immunity to scattering, are confirmed from the emission spectra and near-field imaging and by theoretical simulations and calculations.

94 citations

Journal Article
TL;DR: In this article, a femtosecond microfabrication of transparent dielectrics using non-fracting Bessel beams instead of the conventionally used Gaussian beams is presented.
Abstract: We demonstrate a novel approach to femtosecond microfabrication of transparent dielectrics, which employs nondiffracting Bessel beams instead of the conventionally used Gaussian beams. The main advantage of Bessel beams is the possibility of recording linear photomodified tracks, extending along the lines of nondiffractive beam propagation without sample translation, as would be required for Gaussian beams. Recording of patterns with an aspect ratio of up to 102–103 in vitreous silica using amplified femtosecond Ti:saphire laser pulses is demonstrated.

78 citations