scispace - formally typeset
Search or ask a question
Author

Joy J. Leaner

Bio: Joy J. Leaner is an academic researcher from Stellenbosch University. The author has contributed to research in topics: Mercury (element) & Polyaniline. The author has an hindex of 13, co-authored 15 publications receiving 1864 citations. Previous affiliations of Joy J. Leaner include University of Maryland Center for Environmental Science & Council of Scientific and Industrial Research.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors provided an up-to-date assessment of global mercury emissions from anthropogenic and natural sources, including re-emission processes and primary emissions from natural reservoirs.
Abstract: . This paper provides an up-to-date assessment of global mercury emissions from anthropogenic and natural sources. On an annual basis, natural sources account for 5207 Mg of mercury released to the global atmosphere, including the contribution from re-emission processes, which are emissions of previously deposited mercury originating from anthropogenic and natural sources, and primary emissions from natural reservoirs. Anthropogenic sources, which include a large number of industrial point sources, are estimated to account for 2320 Mg of mercury emitted annually. The major contributions are from fossil-fuel fired power plants (810 Mg yr−1), artisanal small scale gold mining (400 Mg yr−1), non-ferrous metals manufacturing (310 Mg yr−1), cement production (236 Mg yr−1), waste disposal (187 Mg yr−1) and caustic soda production (163 Mg yr−1). Therefore, our current estimate of global mercury emissions suggests that the overall contribution from natural sources (primary emissions + re-emissions) and anthropogenic sources is nearly 7527 Mg per year, the uncertainty associated with these estimates are related to the typology of emission sources and source regions.

1,240 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the biogeochemical cycling of Hg in the Chesapeake Bay and its tributaries, including sampling transects into Baltimore Harbor, a region where sediment Hg concentrations can exceed 5 nmol g−1 and sediment MMHg concentrations approach 50 pmolg−1.

235 citations

Book ChapterDOI
01 Jan 2009
TL;DR: In this article, the authors provided an up-to-date overview of global mercury emissions from natural and anthropogenic sources at country and regional/continental scale, including the contribution from oceans and other surface waters, rocks, top soils and vegetation, volcanoes and other geothermal activities.
Abstract: This chapter provides an up-to-date overview of global mercury emissions from natural and anthropogenic sources at country and regional/continental scale. The information reported in Chapters 2–8 is the basis of the assessment reported in this chapter, however, emissions data related to sources and regions not reported in chapters 2–8 have been derived, to the extent possible, from the most recent peer-reviewed literature and from official technical reports. Natural sources, which include the contribution from oceans and other surface waters, rocks, top soils and vegetation, volcanoes and other geothermal activities and biomass burning are estimated to release annually about 5207 Mg of mercury, part of which represent previously deposited anthropogenic and natural mercury from the atmosphere to ecosystem-receptors due to historic releases and part is a new contribution from natural reservoirs. Current anthropogenic sources, which include a large number of industrial point sources are estimated to release about 2917 Mg of mercury on an annual basis, the major contribution is from fossil fuel-fired power plants (1422 Mg yr-1), artisanal small scale gold mining (400 Mg yr-1), waste disposal (187 Mg yr-1), non-ferrous metals manufacturing (310 Mg yr-1) and cement production (236 Mg yr-1). Our current estimate of global emissions suggest that summing up the contribution from natural and anthropogenic sources nearly 8124 Mg of mercury is released annually to the global atmosphere. The evaluation of global emissions presented in this report differs from previous published assessments because in the past, emissions from several sources, i.e., forest fires and coal-bed fires have not been accounted for, and also because of improved knowledge of some anthropogenic and natural sources (i.e., emissions from oceans, vegetation) as suggested by the most up-to-date literature.

111 citations

Journal ArticleDOI
TL;DR: In this paper, the potential sources of Hg to the South African environment were assessed by focussing particularly on coal combustion at the country's coal-fired power plants, with an estimated average emission of 9.6.

107 citations

Journal ArticleDOI
TL;DR: In this article, monomer solutions of aniline and 2,2′-dithiodianiline (DTDA) were prepared and used in the electrochemical copolymerisation of ANI and DTDA by cyclic voltammetry on a screen-printed electrode (SPE) in 1M HCl.

69 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review covers the toxicology of mercury and its compounds and leads to general discussion of evolutionary aspects of mercury, protective and toxic mechanisms, and ends on a note that mercury is still an “element of mystery.”
Abstract: This review covers the toxicology of mercury and its compounds. Special attention is paid to those forms of mercury of current public health concern. Human exposure to the vapor of metallic mercury dates back to antiquity but continues today in occupational settings and from dental amalgam. Health risks from methylmercury in edible tissues of fish have been the subject of several large epidemiological investigations and continue to be the subject of intense debate. Ethylmercury in the form of a preservative, thimerosal, added to certain vaccines, is the most recent form of mercury that has become a public health concern. The review leads to general discussion of evolutionary aspects of mercury, protective and toxic mechanisms, and ends on a note that mercury is still an "element of mystery."

1,953 citations

Journal Article
TL;DR: In this paper, an inventory of air pollutant emissions in Asia in the year 2000 is developed to support atmospheric modeling and analysis of observations taken during the TRACE-P experiment funded by the National Aeronautics and Space Administration (NASA) and the ACE-Asia experiment, in which emissions are estimated for all major anthropogenic sources, including biomass burning, in 64 regions of Asia.
Abstract: [i] An inventory of air pollutant emissions in Asia in the year 2000 is developed to support atmospheric modeling and analysis of observations taken during the TRACE-P experiment funded by the National Aeronautics and Space Administration (NASA) and the ACE-Asia experiment funded by the National Science Foundation (NSF) and the National Oceanic and Atmospheric Administration (NOAA). Emissions are estimated for all major anthropogenic sources, including biomass burning, in 64 regions of Asia. We estimate total Asian emissions as follows: 34.3 Tg SO 2 , 26.8 Tg NO x , 9870 Tg CO 2 , 279 Tg CO, 107 Tg CH 4 , 52.2 Tg NMVOC, 2.54 Tg black carbon (BC), 10.4 Tg organic carbon (OC), and 27.5 Tg NH 3 . In addition, NMVOC are speciated into 19 subcategories according to functional groups and reactivity. Thus we are able to identify the major source regions and types for many of the significant gaseous and particle emissions that influence pollutant concentrations in the vicinity of the TRACE-P and ACE-Asia field measurements. Emissions in China dominate the signature of pollutant concentrations in this region, so special emphasis has been placed on the development of emission estimates for China. China's emissions are determined to be as follows: 20.4 Tg SO 2 , 11.4 Tg NO x , 3820 Tg CO 2 , 116 Tg CO, 38.4 Tg CH 4 , 17.4 Tg NMVOC, 1.05 Tg BC, 3.4 Tg OC, and 13.6 Tg NH 3 . Emissions are gridded at a variety of spatial resolutions from 1° × 1° to 30 s x 30 s, using the exact locations of large point sources and surrogate GIS distributions of urban and rural population, road networks, landcover, ship lanes, etc. The gridded emission estimates have been used as inputs to atmospheric simulation models and have proven to be generally robust in comparison with field observations, though there is reason to think that emissions of CO and possibly BC may be underestimated. Monthly emission estimates for China are developed for each species to aid TRACE-P and ACE-Asia data interpretation. During the observation period of March/ April, emissions are roughly at their average values (one twelfth of annual). Uncertainties in the emission estimates, measured as 95% confidence intervals, range from a low of ±16% for SO 2 to a high of ±450% for OC.

1,828 citations

Journal ArticleDOI
TL;DR: Understanding of sources, atmosphere-land-ocean Hg dynamics and health effects are synthesized, and integration of Hg science with national and international policy efforts is needed to target efforts and evaluate efficacy.
Abstract: Mercury (Hg) is a global pollutant that affects human and ecosystem health. We synthesize understanding of sources, atmosphere-land-ocean Hg dynamics and health effects, and consider the implications of Hg-control policies. Primary anthropogenic Hg emissions greatly exceed natural geogenic sources, resulting in increases in Hg reservoirs and subsequent secondary Hg emissions that facilitate its global distribution. The ultimate fate of emitted Hg is primarily recalcitrant soil pools and deep ocean waters and sediments. Transfers of Hg emissions to largely unavailable reservoirs occur over the time scale of centuries, and are primarily mediated through atmospheric exchanges of wet/dry deposition and evasion from vegetation, soil organic matter and ocean surfaces. A key link between inorganic Hg inputs and exposure of humans and wildlife is the net production of methylmercury, which occurs mainly in reducing zones in freshwater, terrestrial, and coastal environments, and the subsurface ocean. Elevated human exposure to methylmercury primarily results from consumption of estuarine and marine fish. Developing fetuses are most at risk from this neurotoxin but health effects of highly exposed populations and wildlife are also a concern. Integration of Hg science with national and international policy efforts is needed to target efforts and evaluate efficacy.

1,631 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provided an up-to-date assessment of global mercury emissions from anthropogenic and natural sources, including re-emission processes and primary emissions from natural reservoirs.
Abstract: . This paper provides an up-to-date assessment of global mercury emissions from anthropogenic and natural sources. On an annual basis, natural sources account for 5207 Mg of mercury released to the global atmosphere, including the contribution from re-emission processes, which are emissions of previously deposited mercury originating from anthropogenic and natural sources, and primary emissions from natural reservoirs. Anthropogenic sources, which include a large number of industrial point sources, are estimated to account for 2320 Mg of mercury emitted annually. The major contributions are from fossil-fuel fired power plants (810 Mg yr−1), artisanal small scale gold mining (400 Mg yr−1), non-ferrous metals manufacturing (310 Mg yr−1), cement production (236 Mg yr−1), waste disposal (187 Mg yr−1) and caustic soda production (163 Mg yr−1). Therefore, our current estimate of global mercury emissions suggests that the overall contribution from natural sources (primary emissions + re-emissions) and anthropogenic sources is nearly 7527 Mg per year, the uncertainty associated with these estimates are related to the typology of emission sources and source regions.

1,240 citations

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper used chemical mass balance, positive matrix factorization (PMF), trajectory clustering, and potential source contribution function (PSCF) for characterizing aerosol speciation, identifying likely sources, and apportioning contributions from each likely source.
Abstract: . In this study, 121 daily PM2.5 (aerosol particle with aerodynamic diameter less than 2.5 μm) samples were collected from an urban site in Beijing in four months between April 2009 and January 2010 representing the four seasons. The samples were determined for various compositions, including elements, ions, and organic/elemental carbon. Various approaches, such as chemical mass balance, positive matrix factorization (PMF), trajectory clustering, and potential source contribution function (PSCF), were employed for characterizing aerosol speciation, identifying likely sources, and apportioning contributions from each likely source. Our results have shown distinctive seasonality for various aerosol speciations associated with PM2.5 in Beijing. Soil dust waxes in the spring and wanes in the summer. Regarding the secondary aerosol components, inorganic and organic species may behave in different manners. The former preferentially forms in the hot and humid summer via photochemical reactions, although their precursor gases, such as SO2 and NOx, are emitted much more in winter. The latter seems to favorably form in the cold and dry winter. Synoptic meteorological and climate conditions can overwhelm the emission pattern in the formation of secondary aerosols. The PMF model identified six main sources: soil dust, coal combustion, biomass burning, traffic and waste incineration emission, industrial pollution, and secondary inorganic aerosol. Each of these sources has an annual mean contribution of 16, 14, 13, 3, 28, and 26%, respectively, to PM2.5. However, the relative contributions of these identified sources significantly vary with changing seasons. The results of trajectory clustering and the PSCF method demonstrated that regional sources could be crucial contributors to PM pollution in Beijing. In conclusion, we have unraveled some complex aspects of the pollution sources and formation processes of PM2.5 in Beijing. To our knowledge, this is the first systematic study that comprehensively explores the chemical characterizations and source apportionments of PM2.5 aerosol speciation in Beijing by applying multiple approaches based on a completely seasonal perspective.

1,063 citations