scispace - formally typeset
Search or ask a question
Author

Joydeep Mitra

Bio: Joydeep Mitra is an academic researcher from Michigan State University. The author has contributed to research in topics: Electric power system & Reliability (statistics). The author has an hindex of 30, co-authored 206 publications receiving 3734 citations. Previous affiliations of Joydeep Mitra include New Mexico State University & Virginia Tech.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a protection scheme using digital relays with a communication network is proposed for the protection of the microgrid system and the increased reliability of adding an additional line to form a loop structure is explored.
Abstract: Microgrids have been proposed as a way of integrating large numbers of distributed renewable energy sources with distribution systems. One problem with microgrid implementation is designing a proper protection scheme. It has been shown that traditional protection schemes will not work successfully. In this paper a protection scheme using digital relays with a communication network is proposed for the protection of the microgrid system. The increased reliability of adding an additional line to form a loop structure is explored. Also a novel method for modeling high impedance faults is demonstrated to show how the protection scheme can protect against them. This protection scheme is simulated on a realistic distribution system containing a high penetration of inverter connected Distributed Generation (DG) sources operating as a microgrid. In all possible cases of operation the primary and secondary relays performed their intended functions including the detection of high impedance faults. This system is simulated using Matlab Simulink's SimPowerSystems toolbox to establish the claims made in this paper.

456 citations

Journal ArticleDOI
TL;DR: In this article, a Monte Carlo simulation is used to select regions of the state space where loss of load states is more likely to occur, and these regions are isolated by performing state space decomposition to remove coherent acceptable subspaces.
Abstract: This paper presents a method of computing the reliability indices of a composite generation-transmission system by performing Monte Carlo simulation selectively on those regions of the state space where loss of load states are more likely to occur. These regions are isolated by performing state space decomposition to remove coherent acceptable subspaces. It is shown that this method results in a significant reduction in the number of sampled states, thereby reducing the computational effort required to compute the system and bus indices. The method assumes a DC flow model, and is tested using the IEEE Reliability Test System. The proposed method is not intended to replace existing variance reduction techniques; in fact, such techniques may be used in conjunction with the proposed method to further improve its efficiency.

167 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of wind power on frequency regulation capability at different penetration levels is examined and the analytical and simulation results presented here provide some guidance on determining maximum wind power penetration level given a frequency deviation limit.
Abstract: The integration of renewable energy sources into power systems has gathered significant momentum globally because of its unlimited supply and environmental benefits. Within the portfolio of renewable energy, wind power is expected to have a soaring growth rate in the coming years. Despite its well known benefits, wind power poses several challenges in grid integration. The inherent intermittent and non-dispatchable features of wind power not only inject additional fluctuations to the already variable nature of frequency deviation, they also decrease frequency stability by reducing the inertia and the regulation capability. This paper closely examines these effects as well as the effect on tie-line flows and area control error, which causes a larger and longer frequency deviation in the integrated system. Further, the effect of wind power on frequency regulation capability at different penetration levels is also examined. The analytical and simulation results presented here provide some guidance on determining maximum wind power penetration level given a frequency deviation limit.

164 citations

Journal ArticleDOI
TL;DR: An analytical method for placement and sizing of distributed generation on power distribution systems for loss reduction is introduced in this paper, which is non-iterative, direct, and involves no convergence issues even for systems with high R/X branch ratios.
Abstract: An analytical method for placement and sizing of distributed generation on power distribution systems for loss reduction is introduced. The proposed analytical method is developed based on a new formulation for the power flow problem, which is non-iterative, direct, and involves no convergence issues even for systems with high R/X branch ratios. Further, this power flow solution is extremely useful whenever fast and repetitive power flow estimations are required. A priority list based on loss sensitivity factors is developed to determine the optimal locations of the candidate distributed generation units. Sensitivity analysis is performed to estimate the optimal size and power factor of the candidate distributed generation units. Various types of distributed generators (DGs) have been dealt with and viable solutions are proposed to reduce total system loss. The proposed method has been tested on 33-bus and 69-bus distribution systems, which are extensively used as examples in solving the placement and sizing problem of DGs. Exhaustive power flow routines are also performed to verify the sizes obtained by the analytical method. The test results show that the proposed analytical method could lead to optimal or near-optimal solution, while requiring lower computational effort.

135 citations

Proceedings ArticleDOI
25 Jul 2010
TL;DR: In this paper, a protection scheme using digital relays with a communication network is proposed for the protection of the microgrid system and the increased reliability of adding an additional line to form a loop structure is explored.
Abstract: Microgrids have been proposed as a way of integrating large numbers of distributed renewable energy sources with distribution systems. One problem with microgrid implementation is designing a proper protection scheme. It has been shown that traditional protection schemes will not work successfully. In this paper a protection scheme using digital relays with a communication network is proposed for the protection of the microgrid system. The increased reliability of adding an additional line to form a loop structure is explored. Also a novel method for modeling high impedance faults is demonstrated to show how the protection scheme can protect against them. This protection scheme is simulated on a realistic distribution system containing a high penetration of inverter connected Distributed Generation (DG) sources operating as a microgrid. In all possible cases of operation the primary and secondary relays performed their intended functions including the detection of high impedance faults. This system is simulated using Matlab Simulink's SimPowerSystems toolbox to establish the claims made in this paper.

131 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors survey the literature till 2011 on the enabling technologies for the Smart Grid and explore three major systems, namely the smart infrastructure system, the smart management system, and the smart protection system.
Abstract: The Smart Grid, regarded as the next generation power grid, uses two-way flows of electricity and information to create a widely distributed automated energy delivery network. In this article, we survey the literature till 2011 on the enabling technologies for the Smart Grid. We explore three major systems, namely the smart infrastructure system, the smart management system, and the smart protection system. We also propose possible future directions in each system. colorred{Specifically, for the smart infrastructure system, we explore the smart energy subsystem, the smart information subsystem, and the smart communication subsystem.} For the smart management system, we explore various management objectives, such as improving energy efficiency, profiling demand, maximizing utility, reducing cost, and controlling emission. We also explore various management methods to achieve these objectives. For the smart protection system, we explore various failure protection mechanisms which improve the reliability of the Smart Grid, and explore the security and privacy issues in the Smart Grid.

2,433 citations

01 Jan 2012
TL;DR: This article surveys the literature till 2011 on the enabling technologies for the Smart Grid, and explores three major systems, namely the smart infrastructure system, the smart management system, and the smart protection system.

2,337 citations

Journal ArticleDOI
TL;DR: From these relationships, three optimal charging algorithms are developed which minimize the impacts of PHEV charging on the connected distribution system and show the additional benefits of reduced computation time and problem convexity when using load factor or load variance as the objective function rather than system losses.
Abstract: As the number of plug-in hybrid vehicles (PHEVs) increases, so might the impacts on the power system performance, such as overloading, reduced efficiency, power quality, and voltage regulation particularly at the distribution level. Coordinated charging of PHEVs is a possible solution to these problems. In this work, the relationship between feeder losses, load factor, and load variance is explored in the context of coordinated PHEV charging. From these relationships, three optimal charging algorithms are developed which minimize the impacts of PHEV charging on the connected distribution system. The application of the algorithms to two test systems verifies these relationships approximately hold independent of system topology. They also show the additional benefits of reduced computation time and problem convexity when using load factor or load variance as the objective function rather than system losses. This is important for real-time dispatching of PHEVs.

1,057 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive literature review of AC and DC microgrid (MG) systems in connection with distributed generation (DG) units using renewable energy sources (RESs), energy storage systems (ESS) and loads.
Abstract: This paper presents the latest comprehensive literature review of AC and DC microgrid (MG) systems in connection with distributed generation (DG) units using renewable energy sources (RESs), energy storage systems (ESS) and loads. A survey on the alternative DG units' configurations in the low voltage AC (LVAC) and DC (LVDC) distribution networks with several applications of microgrid systems in the viewpoint of the current and the future consumer equipments energy market is extensively discussed. Based on the economical, technical and environmental benefits of the renewable energy related DG units, a thorough comparison between the two types of microgrid systems is provided. The paper also investigates the feasibility, control and energy management strategies of the two microgrid systems relying on the most current research works. Finally, the generalized relay tripping currents are derived and the protection strategies in microgrid systems are addressed in detail. From this literature survey, it can be revealed that the AC and DC microgrid systems with multiconverter devices are intrinsically potential for the future energy systems to achieve reliability, efficiency and quality power supply.

1,004 citations

Journal ArticleDOI
TL;DR: In this article, a review of microgrid drivers, real-world applications, challenges, and future prospects is presented, along with a multi-disciplinary portrait of today's micro-grid drivers.
Abstract: Microgrids are now emerging from lab benches and pilot demonstration sites into commercial markets, driven by technological improvements, falling costs, a proven track record, and growing recognition of their benefits. They are being used to improve reliability and resilience of electrical grids, to manage the addition of distributed clean energy resources like wind and solar photovoltaic (PV) generation to reduce fossil fuel emissions, and to provide electricity in areas not served by centralized electrical infrastructure. This review article (1) explains what a microgrid is, and (2) provides a multi-disciplinary portrait of today's microgrid drivers, real-world applications, challenges, and future prospects.

884 citations