scispace - formally typeset
Search or ask a question
Author

Jr. Frank E. Harrell

Bio: Jr. Frank E. Harrell is an academic researcher from Vanderbilt University. The author has contributed to research in topics: Ordinal regression & Logistic regression. The author has an hindex of 1, co-authored 1 publications receiving 3607 citations.

Papers
More filters
BookDOI
01 Jan 2006
TL;DR: Regression models are frequently used to develop diagnostic, prognostic, and health resource utilization models in clinical, health services, outcomes, pharmacoeconomic, and epidemiologic research, and in a multitude of non-health-related areas.
Abstract: Regression models are frequently used to develop diagnostic, prognostic, and health resource utilization models in clinical, health services, outcomes, pharmacoeconomic, and epidemiologic research, and in a multitude of non-health-related areas. Regression models are also used to adjust for patient heterogeneity in randomized clinical trials, to obtain tests that are more powerful and valid than unadjusted treatment comparisons.

4,211 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The use (and misuse) of GLMMs in ecology and evolution are reviewed, estimation and inference are discussed, and 'best-practice' data analysis procedures for scientists facing this challenge are summarized.
Abstract: How should ecologists and evolutionary biologists analyze nonnormal data that involve random effects? Nonnormal data such as counts or proportions often defy classical statistical procedures. Generalized linear mixed models (GLMMs) provide a more flexible approach for analyzing nonnormal data when random effects are present. The explosion of research on GLMMs in the last decade has generated considerable uncertainty for practitioners in ecology and evolution. Despite the availability of accurate techniques for estimating GLMM parameters in simple cases, complex GLMMs are challenging to fit and statistical inference such as hypothesis testing remains difficult. We review the use (and misuse) of GLMMs in ecology and evolution, discuss estimation and inference and summarize 'best-practice' data analysis procedures for scientists facing this challenge.

7,207 citations

Journal ArticleDOI
TL;DR: It is argued that researchers using LMEMs for confirmatory hypothesis testing should minimally adhere to the standards that have been in place for many decades, and it is shown thatLMEMs generalize best when they include the maximal random effects structure justified by the design.

6,878 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide an introduction to mixed-effects models for the analysis of repeated measurement data with subjects and items as crossed random effects, and a worked-out example of how to use recent software for mixed effects modeling is provided.

6,853 citations

Journal ArticleDOI
TL;DR: Methods to determine the sampling distribution of the standardized difference when the true standardized difference is equal to zero are described, thereby allowing one to determined the range of standardized differences that are plausible with the propensity score model having been correctly specified.
Abstract: The propensity score is a subject's probability of treatment, conditional on observed baseline covariates. Conditional on the true propensity score, treated and untreated subjects have similar distributions of observed baseline covariates. Propensity-score matching is a popular method of using the propensity score in the medical literature. Using this approach, matched sets of treated and untreated subjects with similar values of the propensity score are formed. Inferences about treatment effect made using propensity-score matching are valid only if, in the matched sample, treated and untreated subjects have similar distributions of measured baseline covariates. In this paper we discuss the following methods for assessing whether the propensity score model has been correctly specified: comparing means and prevalences of baseline characteristics using standardized differences; ratios comparing the variance of continuous covariates between treated and untreated subjects; comparison of higher order moments and interactions; five-number summaries; and graphical methods such as quantile–quantile plots, side-by-side boxplots, and non-parametric density plots for comparing the distribution of baseline covariates between treatment groups. We describe methods to determine the sampling distribution of the standardized difference when the true standardized difference is equal to zero, thereby allowing one to determine the range of standardized differences that are plausible with the propensity score model having been correctly specified. We highlight the limitations of some previously used methods for assessing the adequacy of the specification of the propensity-score model. In particular, methods based on comparing the distribution of the estimated propensity score between treated and untreated subjects are uninformative. Copyright © 2009 John Wiley & Sons, Ltd.

3,929 citations

Journal ArticleDOI
TL;DR: The data suggest that radiomics identifies a general prognostic phenotype existing in both lung and head-and-neck cancer, which may have a clinical impact as imaging is routinely used in clinical practice, providing an unprecedented opportunity to improve decision-support in cancer treatment at low cost.
Abstract: Human cancers exhibit strong phenotypic differences that can be visualized noninvasively by medical imaging. Radiomics refers to the comprehensive quantification of tumour phenotypes by applying a large number of quantitative image features. Here we present a radiomic analysis of 440 features quantifying tumour image intensity, shape and texture, which are extracted from computed tomography data of 1,019 patients with lung or head-and-neck cancer. We find that a large number of radiomic features have prognostic power in independent data sets of lung and head-and-neck cancer patients, many of which were not identified as significant before. Radiogenomics analysis reveals that a prognostic radiomic signature, capturing intratumour heterogeneity, is associated with underlying gene-expression patterns. These data suggest that radiomics identifies a general prognostic phenotype existing in both lung and head-and-neck cancer. This may have a clinical impact as imaging is routinely used in clinical practice, providing an unprecedented opportunity to improve decision-support in cancer treatment at low cost.

3,473 citations