scispace - formally typeset
Search or ask a question
Author

Jr . G. David Forney

Bio: Jr . G. David Forney is an academic researcher. The author has contributed to research in topics: Leech lattice & Block code. The author has an hindex of 1, co-authored 1 publications receiving 269 citations.

Papers
More filters
01 Jan 1988
TL;DR: The family of Barnes-Wall lattices and their principal sublattices, which are useful in con- structing coset codes, are generated by iteration of a simple construction called the "squaring construction," and the closely related Reed-Muller codes are generate by the same construction.
Abstract: The family of Barnes-Wall lattices (including D4 and E,) of lengths N = 2" and their principal sublattices, which are useful in con- structing coset codes, are generated by iteration of a simple construction called the "squaring construction." The closely related Reed-Muller codes are generated by the same construction. The principal properties of these codes and lattices, including distances, dimensions, partitions, generator matrices, and duality properties, are consequences of the general proper- ties of iterated squaring constructions, which also exhibit the interrelation- ships between codes and lattices of different lengths. An extension called the "cubing construction" generates good codes and lattices of lengths N = 3.2", including the Golay code and Leech lattice, with the use of special bases for 8-space. Another related construction generates the Nordstrom-Robinson code and an analogous 16-dimensional nonlattice packing. These constructions are represented by trellis diagrams that display their structure and interrelationships and that lead to efficient maximum likelihood decoding algorithms. General algebraic methods for determining minimal trellis diagrams of codes, lattices, and partitions are given in an Appendix.

274 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An efficient closest point search algorithm, based on the Schnorr-Euchner (1995) variation of the Pohst (1981) method, is implemented and is shown to be substantially faster than other known methods.
Abstract: In this semitutorial paper, a comprehensive survey of closest point search methods for lattices without a regular structure is presented. The existing search strategies are described in a unified framework, and differences between them are elucidated. An efficient closest point search algorithm, based on the Schnorr-Euchner (1995) variation of the Pohst (1981) method, is implemented. Given an arbitrary point x /spl isin/ /spl Ropf//sup m/ and a generator matrix for a lattice /spl Lambda/, the algorithm computes the point of /spl Lambda/ that is closest to x. The algorithm is shown to be substantially faster than other known methods, by means of a theoretical comparison with the Kannan (1983, 1987) algorithm and an experimental comparison with the Pohst (1981) algorithm and its variants, such as the Viterbo-Boutros (see ibid. vol.45, p.1639-42, 1999) decoder. Modifications of the algorithm are developed to solve a number of related search problems for lattices, such as finding a shortest vector, determining the kissing number, computing the Voronoi (1908)-relevant vectors, and finding a Korkine-Zolotareff (1873) reduced basis.

1,616 citations

Journal ArticleDOI
TL;DR: A novel algorithm is developed that is inspired by the Pohst enumeration strategy and is shown to offer a significant reduction in complexity compared to the Viterbo-Boutros sphere decoder and is supported by intuitive arguments and simulation results in many relevant scenarios.
Abstract: Maximum-likelihood (ML) decoding algorithms for Gaussian multiple-input multiple-output (MIMO) linear channels are considered. Linearity over the field of real numbers facilitates the design of ML decoders using number-theoretic tools for searching the closest lattice point. These decoders are collectively referred to as sphere decoders in the literature. In this paper, a fresh look at this class of decoding algorithms is taken. In particular, two novel algorithms are developed. The first algorithm is inspired by the Pohst enumeration strategy and is shown to offer a significant reduction in complexity compared to the Viterbo-Boutros sphere decoder. The connection between the proposed algorithm and the stack sequential decoding algorithm is then established. This connection is utilized to construct the second algorithm which can also be viewed as an application of the Schnorr-Euchner strategy to ML decoding. Aided with a detailed study of preprocessing algorithms, a variant of the second algorithm is developed and shown to offer significant reductions in the computational complexity compared to all previously proposed sphere decoders with a near-ML detection performance. This claim is supported by intuitive arguments and simulation results in many relevant scenarios.

1,410 citations

01 Jan 1996
TL;DR: It is showed that many iterative decoding algorithms are special cases of two generic algorithms, the min-sum and sum-product algorithms, which also include non-iterative algorithms such as Viterbi decoding.
Abstract: Iterative decoding techniques have become a viable alternative for constructing high performance coding systems. In particular, the recent success of turbo codes indicates that performance close to the Shannon limit may be achieved. In this thesis, it is showed that many iterative decoding algorithms are special cases of two generic algorithms, the min-sum and sum-product algorithms, which also include non-iterative algorithms such as Viterbi decoding. The min-sum and sum-product algorithms are developed and presented as generalized trellis algorithms, where the time axis of the trellis is replaced by an arbitrary graph, the “Tanner graph”. With cycle-free Tanner graphs, the resulting decoding algorithms (e.g., Viterbi decoding) are maximum-likelihood but suffer from an exponentially increasing complexity. Iterative decoding occurs when the Tanner graph has cycles (e.g., turbo codes); the resulting algorithms are in general suboptimal, but significant complexity reductions are possible compared to the cycle-free case. Several performance estimates for iterative decoding are developed, including a generalization of the union bound used with Viterbi decoding and a characterization of errors that are uncorrectable after infinitely many decoding iterations.

1,044 citations

Journal ArticleDOI
TL;DR: This paper deals with 2/sup l/-ary transmission using multilevel coding (MLC) and multistage decoding (MSD) and shows that capacity can in fact be closely approached at high bandwidth efficiencies.
Abstract: This paper deals with 2/sup l/-ary transmission using multilevel coding (MLC) and multistage decoding (MSD). The known result that MLC and MSD suffice to approach capacity if the rates at each level are appropriately chosen is reviewed. Using multiuser information theory, it is shown that there is a large space of rate combinations such that MLC and full maximum-likelihood decoding (MLD) can approach capacity. It is noted that multilevel codes designed according to the traditional balanced distance rule tend to fall in the latter category and, therefore, require the huge complexity of MLD. The capacity rule, the balanced distances rules, and two other rules based on the random coding exponent and cutoff rate are compared and contrasted for practical design. Simulation results using multilevel binary turbo codes show that capacity can in fact be closely approached at high bandwidth efficiencies. Moreover, topics relevant in practical applications such as signal set labeling, dimensionality of the constituent constellation, and hard-decision decoding are emphasized. Bit interleaved coded modulation, proposed by Caire et al. (see ibid., vol.44, p.927-46, 1998), is reviewed in the context of MLC. Finally, the combination of signal shaping and coding is discussed. Significant shaping gains are achievable in practice only if these design rules are taken into account.

1,030 citations

Journal ArticleDOI
TL;DR: The known types of coset codes, as well as a number of new classes that systematize and generalize known codes, are classified and compared in terms of these parameters.
Abstract: Practically all known good constructive coding techniques for bandlimited channels, including lattice codes and various trellis-coded modulation schemes, can be characterized as coset codes. A coset code is defined by a lattice partition Lambda / Lambda ' and by a binary encoder C that selects a sequence of cosets of the lattice Lambda '. The fundamental coding gain of a coset code, as well as other important parameters such as the error coefficient, the decoding complexity, and the constellation expansion factor, are purely geometric parameters determined by C Lambda / Lambda '. The known types of coset codes, as well as a number of new classes that systematize and generalize known codes, are classified and compared in terms of these parameters. >

676 citations