scispace - formally typeset
Search or ask a question
Author

Juan C. Vasquez

Bio: Juan C. Vasquez is an academic researcher from Aalborg University. The author has contributed to research in topics: Microgrid & Voltage droop. The author has an hindex of 67, co-authored 426 publications receiving 24605 citations. Previous affiliations of Juan C. Vasquez include University of Technology, Sydney & Polytechnic University of Catalonia.


Papers
More filters
Journal ArticleDOI
TL;DR: Simulation and experimental results from a 2 × 2.2 kW parallel converter system are presented in order to validate the proposed approach and establish the model of the SoC-based adaptive droop control system, and the system stability is analyzed.
Abstract: This paper presents the coordinated control of distributed energy storage systems in dc microgrids. In order to balance the state-of-charge (SoC) of each energy storage unit (ESU), an SoC-based adaptive droop control method is proposed. In this decentralized control method, the droop coefficient is inversely proportional to the nth order of SoC. By using a SoC-based droop method, the ESUs with higher SoC deliver more power, whereas the ones with lower SoC deliver less power. Therefore, the energy stored in the ESU with higher SoC decreases faster than that with lower SoC. The SoC difference between each ESU gradually becomes smaller, and finally, the load power is equally shared between the distributed ESUs. Meanwhile, the load sharing speed can be adjusted by changing the exponent of SoC in the adaptive droop control. The model of the SoC-based adaptive droop control system is established, and the system stability is thereby analyzed by using this model. Simulation and experimental results from a 2 × 2.2 kW parallel converter system are presented in order to validate the proposed approach.

598 citations

Journal ArticleDOI
TL;DR: A phase-locked loop (PLL) is a nonlinear negative feedback control system that synchronizes its output in frequency as well as in phase with its input PLLs are now widely used for the synchronization of power-electronics-based converters and also for monitoring and control purposes in different engineering fields as mentioned in this paper.
Abstract: A phase-locked loop (PLL) is a nonlinear negative-feedback control system that synchronizes its output in frequency as well as in phase with its input PLLs are now widely used for the synchronization of power-electronics-based converters and also for monitoring and control purposes in different engineering fields In recent years, there have been many attempts to design more advanced PLLs for three-phase applications The aim of this paper is to provide overviews of these attempts, which can be very useful for engineers and academic researchers

563 citations

Journal ArticleDOI
TL;DR: In this article, an enhanced distributed generation (DG) unit virtual impedance control approach is proposed, which can realize accurate regulation of DG unit equivalent impedance at both fundamental and selected harmonic frequencies.
Abstract: In order to address the load sharing problem in islanding microgrids, this paper proposes an enhanced distributed generation (DG) unit virtual impedance control approach. The proposed method can realize accurate regulation of DG unit equivalent impedance at both fundamental and selected harmonic frequencies. In contrast to conventional virtual impedance control methods, where only a line current feed-forward term is added to the DG voltage reference, the proposed virtual impedance at fundamental and harmonic frequencies is regulated using DG line current and point of common coupling (PCC) voltage feed-forward terms, respectively. With this modification, the impacts of mismatched physical feeder impedances are compensated. Thus, better reactive and harmonic power sharing can be realized. Additionally, this paper also demonstrates that PCC harmonic voltages can be mitigated by reducing the magnitude of DG unit equivalent harmonic impedance. Finally, in order to alleviate the computing load at DG unit local controller, this paper further exploits the band-pass capability of conventionally resonant controllers. With the implementation of proposed resonant controller, accurate power sharing and PCC harmonic voltage compensation are achieved without using any fundamental and harmonic components extractions. Experimental results from a scaled single-phase microgrid prototype are provided to validate the feasibility of the proposed virtual impedance control approach.

425 citations

Journal ArticleDOI
TL;DR: In this paper, the main concepts related to the configuration, control, and energy management of intelligent microgrids are reviewed, including black start operation, frequency and voltage stability, active and reactive power flow control, active power filter capabilities, and storage energy management.
Abstract: Worldwide, electrical grids are expected to become smarter in the near future. In this sense, there is an increasing interest in intelligent and flexible microgrids, i.e., able to operate in island or in grid-connected modes. Black start operation, frequency and voltage stability, active and reactive power flow control, active power filter capabilities, and storage energy management are the functionalities expected for these small grids. This way, the energy can be generated and stored near the consumption points, thus increasing the reliability and reducing the losses produced by the large power lines. In this article, the main concepts related to the configuration, control, and energy management of intelligent microgrids are reviewed.

422 citations

Journal ArticleDOI
TL;DR: The results show the effectiveness of the proposed control structure in compensating the voltage unbalance in an islanded microgrid.
Abstract: The concept of microgrid hierarchical control is presented recently. In this paper, a hierarchical scheme is proposed which includes primary and secondary control levels. The primary level comprises distributed generators (DGs) local controllers. The local controllers mainly consist of power, voltage and current controllers, and virtual impedance control loop. The central secondary controller is designed to manage the compensation of voltage unbalance at the point of common coupling (PCC) in an islanded microgrid. Unbalance compensation is achieved by sending proper control signals to the DGs local controllers. The design procedure of the control system is discussed in detail and the simulation results are presented. The results show the effectiveness of the proposed control structure in compensating the voltage unbalance.

407 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
01 Nov 2009
TL;DR: The hierarchical control derived from ISA-95 and electrical dispatching standards to endow smartness and flexibility to MGs is presented and results are provided to show the feasibility of the proposed approach.
Abstract: DC and AC Microgrids are key elements to integrate renewable and distributed energy resources as well as distributed energy storage systems. In the last years, efforts toward the standardization of these Microgrids have been made. In this sense, this paper present the hierarchical control derived from ISA-95 and electrical dispatching standards to endow smartness and flexibility to microgrids. The hierarchical control proposed consist of three levels: i) the primary control is based on the droop method, including an output impedance virtual loop; ii) the secondary control allows restoring the deviations produced by the primary control; and iii) the tertiary control manage the power flow between the microgrid and the external electrical distribution system. Results from a hierarchical-controlled microgrid are provided to show the feasibility of the proposed approach.

4,145 citations

Journal ArticleDOI
TL;DR: An overview and a taxonomy for DSM is given, the various types of DSM are analyzed, and an outlook on the latest demonstration projects in this domain is given.
Abstract: Energy management means to optimize one of the most complex and important technical creations that we know: the energy system. While there is plenty of experience in optimizing energy generation and distribution, it is the demand side that receives increasing attention by research and industry. Demand Side Management (DSM) is a portfolio of measures to improve the energy system at the side of consumption. It ranges from improving energy efficiency by using better materials, over smart energy tariffs with incentives for certain consumption patterns, up to sophisticated real-time control of distributed energy resources. This paper gives an overview and a taxonomy for DSM, analyzes the various types of DSM, and gives an outlook on the latest demonstration projects in this domain.

2,647 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed analysis of the main operation modes and control structures for power converters belonging to micro-grids is carried out, focusing mainly on grid-forming, grid-feeding, and grid-supporting configurations.
Abstract: The enabling of ac microgrids in distribution networks allows delivering distributed power and providing grid support services during regular operation of the grid, as well as powering isolated islands in case of faults and contingencies, thus increasing the performance and reliability of the electrical system. The high penetration of distributed generators, linked to the grid through highly controllable power processors based on power electronics, together with the incorporation of electrical energy storage systems, communication technologies, and controllable loads, opens new horizons to the effective expansion of microgrid applications integrated into electrical power systems. This paper carries out an overview about microgrid structures and control techniques at different hierarchical levels. At the power converter level, a detailed analysis of the main operation modes and control structures for power converters belonging to microgrids is carried out, focusing mainly on grid-forming, grid-feeding, and grid-supporting configurations. This analysis is extended as well toward the hierarchical control scheme of microgrids, which, based on the primary, secondary, and tertiary control layer division, is devoted to minimize the operation cost, coordinating support services, meanwhile maximizing the reliability and the controllability of microgrids. Finally, the main grid services that microgrids can offer to the main network, as well as the future trends in the development of their operation and control for the next future, are presented and discussed.

2,621 citations

Journal ArticleDOI
TL;DR: The major issues and challenges in microgrid control are discussed, and a review of state-of-the-art control strategies and trends is presented; a general overview of the main control principles (e.g., droop control, model predictive control, multi-agent systems).
Abstract: The increasing interest in integrating intermittent renewable energy sources into microgrids presents major challenges from the viewpoints of reliable operation and control. In this paper, the major issues and challenges in microgrid control are discussed, and a review of state-of-the-art control strategies and trends is presented; a general overview of the main control principles (e.g., droop control, model predictive control, multi-agent systems) is also included. The paper classifies microgrid control strategies into three levels: primary, secondary, and tertiary, where primary and secondary levels are associated with the operation of the microgrid itself, and tertiary level pertains to the coordinated operation of the microgrid and the host grid. Each control level is discussed in detail in view of the relevant existing technical literature.

2,358 citations