scispace - formally typeset
Search or ask a question
Author

Juan J. Badimon

Bio: Juan J. Badimon is an academic researcher from Icahn School of Medicine at Mount Sinai. The author has contributed to research in topics: Thrombus & Platelet activation. The author has an hindex of 88, co-authored 442 publications receiving 36484 citations. Previous affiliations of Juan J. Badimon include Harvard University & City University of New York.


Papers
More filters
Journal ArticleDOI
TL;DR: The two hypotheses to explain the pathogenesis of atherosclerosis, the "incrustation" hypothesis and the "lipid" hypothesis, are now known.
Abstract: IN the 19th century there were two major hypotheses to explain the pathogenesis of atherosclerosis: the "incrustation" hypothesis and the "lipid" hypothesis. The incrustation hypothesis of von Rokitansky,1 proposed in 1852 and modified by Duguid,2 suggested that intimal thickening resulted from fibrin deposition, with subsequent organization by fibroblasts and secondary lipid accumulation. The lipid hypothesis, proposed by Virchow3 in 1856, suggested that lipid in the arterial wall represented a transduction of blood lipid, which subsequently formed complexes with acid mucopolysaccharides; lipid accumulated in arterial walls because mechanisms of lipid deposition predominated over those of removal. The two hypotheses are now . . .

3,779 citations

Journal ArticleDOI
TL;DR: The term "vulnerable patient" may be more appropriate and is proposed now for the identification of subjects with high likelihood of developing cardiac events in the near future and a quantitative method for cumulative risk assessment of vulnerable patients needs to be developed.
Abstract: Atherosclerotic cardiovascular disease results in >19 million deaths annually, and coronary heart disease accounts for the majority of this toll. Despite major advances in treatment of coronary heart disease patients, a large number of victims of the disease who are apparently healthy die suddenly without prior symptoms. Available screening and diagnostic methods are insufficient to identify the victims before the event occurs. The recognition of the role of the vulnerable plaque has opened new avenues of opportunity in the field of cardiovascular medicine. This consensus document concludes the following. (1) Rupture-prone plaques are not the only vulnerable plaques. All types of atherosclerotic plaques with high likelihood of thrombotic complications and rapid progression should be considered as vulnerable plaques. We propose a classification for clinical as well as pathological evaluation of vulnerable plaques. (2) Vulnerable plaques are not the only culprit factors for the development of acute coronary syndromes, myocardial infarction, and sudden cardiac death. Vulnerable blood (prone to thrombosis) and vulnerable myocardium (prone to fatal arrhythmia) play an important role in the outcome. Therefore, the term "vulnerable patient" may be more appropriate and is proposed now for the identification of subjects with high likelihood of developing cardiac events in the near future. (3) A quantitative method for cumulative risk assessment of vulnerable patients needs to be developed that may include variables based on plaque, blood, and myocardial vulnerability. In Part I of this consensus document, we cover the new definition of vulnerable plaque and its relationship with vulnerable patients. Part II of this consensus document focuses on vulnerable blood and vulnerable myocardium and provide an outline of overall risk assessment of vulnerable patients. Parts I and II are meant to provide a general consensus and overviews the new field of vulnerable patient. Recently developed assays (eg, C-reactive protein), imaging techniques (eg, CT and MRI), noninvasive electrophysiological tests (for vulnerable myocardium), and emerging catheters (to localize and characterize vulnerable plaque) in combination with future genomic and proteomic techniques will guide us in the search for vulnerable patients. It will also lead to the development and deployment of new therapies and ultimately to reduce the incidence of acute coronary syndromes and sudden cardiac death. We encourage healthcare policy makers to promote translational research for screening and treatment of vulnerable patients.

2,719 citations

Journal ArticleDOI
TL;DR: It is suggested that blood-borne TF is inherently thrombogenic and may be involved in thrombus propagation at the site of vascular injury.
Abstract: Arterial thrombosis is considered to arise from the interaction of tissue factor (TF) in the vascular wall with platelets and coagulation factors in circulating blood. According to this paradigm, coagulation is initiated after a vessel is damaged and blood is exposed to vessel-wall TF. We have examined thrombus formation on pig arterial media (which contains no stainable TF) and on collagen-coated glass slides (which are devoid of TF) exposed to flowing native human blood. In both systems the thrombi that formed during a 5-min perfusion stained intensely for TF, much of which was not associated with cells. Antibodies against TF caused ≈70% reduction in the amount of thrombus formed on the pig arterial media and also reduced thrombi on the collagen-coated glass slides. TF deposited on the slides was active, as there was abundant fibrin in the thrombi. Factor VIIai, a potent inhibitor of TF, essentially abolished fibrin production and markedly reduced the mass of the thrombi. Immunoelectron microscopy revealed TF-positive membrane vesicles that we frequently observed in large clusters near the surface of platelets. TF, measured by factor Xa formation, was extracted from whole blood and plasma of healthy subjects. By using immunostaining, TF-containing neutrophils and monocytes were identified in peripheral blood; our data raise the possibility that leukocytes are the main source of blood TF. We suggest that blood-borne TF is inherently thrombogenic and may be involved in thrombus propagation at the site of vascular injury.

1,008 citations

Journal ArticleDOI
TL;DR: This is the first in vivo, prospective evidence of the antiatherogenic effect of HDL-VHDL against preexisting atherosclerosis and suggests that it may be possible not only to inhibit progression but even to reduce established atherosclerotic lesions by HDL administration.
Abstract: The effects of homologous plasma HDL and VHDL fractions on established atherosclerotic lesions were studied in cholesterol-fed rabbits. Atherosclerosis was induced by feeding the animals a 0.5% cholesterol-rich diet for 60 d (group 1). Another group of animals were maintained on the same diet for 90 d (group 2). A third group was also fed the same diet for 90 d but received 50 mg HDL-VHDL protein per wk (isolated from normolipemic rabbit plasma) during the last 30 d (group 3). Aortic atherosclerotic involvement at the completion of the study was 34 +/- 4% in group 1, 38.8 +/- 5% in group 2, and 17.8 +/- 4% in group 3 (P less than 0.005). Aortic lipid deposition was also significantly reduced in group 3 compared with group 1 (studied at only 60 d) and group 2. This is the first in vivo, prospective evidence of the antiatherogenic effect of HDL-VHDL against preexisting atherosclerosis. Our results showed that HDL plasma fractions were able to induce regression of established aortic fatty streaks and lipid deposits. Our results suggest that it may be possible not only to inhibit progression but even to reduce established atherosclerotic lesions by HDL administration.

805 citations

Journal ArticleDOI
TL;DR: This review will focus on the current theories of atherogenesis and how they impact on the understanding of acute coronary syndromes.
Abstract: Atherosclerotic diseases and their thrombotic complications remain the leading causes of mortality and morbidity in Western society In the United States, cardiovascular disease is responsible for one in every 24 (414%) deaths and is the leading single cause of mortality Furthermore, the presence of atherosclerotic disease (defined as thickening of the arterial wall through the accumulation of lipids, macrophages, T-lymphocytes, smooth muscle cells, extracellular matrix, calcium and necrotic debris) is more prevalent, but by itself rarely fatal The crucial, final common process for the conversion of a nonocclusive, often clinically silent atherosclerotic lesion to a potentially fatal condition is often plaque disruption The mortality associated with atherosclerotic disease relates to the acute coronary syndromes, including acute myocardial infarction, unstable angina pectoris and sudden cardiac death Substantial clinical, experimental and postmortem evidence demonstrates the central role that a superimposed acute thrombosis on a disrupted atherosclerotic plaque plays in the onset of acute coronary syndromes Therefore, therapeutic approaches to date have focused on reducing such thrombotic complications of atherosclerotic plaques (ie, antiplatelet, anticoagulant and thrombolytic therapies) to reduce the resulting morbidity and mortality In this review, we will focus on the current theories of atherogenesis and how they impact on our understanding of acute coronary syndromes

776 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Atherosclerosis is an inflammatory disease as discussed by the authors, and it is a major cause of death in the United States, Europe, and much of Asia, despite changes in lifestyle and use of new pharmacologic approaches to lower plasma cholesterol concentrations.
Abstract: Atherosclerosis is an inflammatory disease. Because high plasma concentrations of cholesterol, in particular those of low-density lipoprotein (LDL) cholesterol, are one of the principal risk factors for atherosclerosis,1 the process of atherogenesis has been considered by many to consist largely of the accumulation of lipids within the artery wall; however, it is much more than that. Despite changes in lifestyle and the use of new pharmacologic approaches to lower plasma cholesterol concentrations,2,3 cardiovascular disease continues to be the principal cause of death in the United States, Europe, and much of Asia.4,5 In fact, the lesions of atherosclerosis represent . . .

19,881 citations

Journal ArticleDOI
29 Apr 1993-Nature
TL;DR: The ability to control the expression of genes encoding these molecules and to target specific cell types provides opportunities to develop new diagnostic and therapeutic agents to induce the regression of the lesions and, possibly, to prevent their formation.
Abstract: Atherosclerosis, the principal cause of heart attack, stroke and gangrene of the extremities, is responsible for 50% of all mortality in the USA, Europe and Japan. The lesions result from an excessive, inflammatory-fibroproliferative response to various forms of insult to the endothelium and smooth muscle of the artery wall. A large number of growth factors, cytokines and vasoregulatory molecules participate in this process. Our ability to control the expression of genes encoding these molecules and to target specific cell types provides opportunities to develop new diagnostic and therapeutic agents to induce the regression of the lesions and, possibly, to prevent their formation.

10,861 citations

Journal Article
TL;DR: Despite changes in lifestyle and the use of new pharmacologic approaches to lower plasma cholesterol concentrations, cardiovascular disease continues to be the principal cause of death in the United States, Europe, and much of Asia.

9,749 citations

01 Jan 2014
TL;DR: These standards of care are intended to provide clinicians, patients, researchers, payors, and other interested individuals with the components of diabetes care, treatment goals, and tools to evaluate the quality of care.
Abstract: XI. STRATEGIES FOR IMPROVING DIABETES CARE D iabetes is a chronic illness that requires continuing medical care and patient self-management education to prevent acute complications and to reduce the risk of long-term complications. Diabetes care is complex and requires that many issues, beyond glycemic control, be addressed. A large body of evidence exists that supports a range of interventions to improve diabetes outcomes. These standards of care are intended to provide clinicians, patients, researchers, payors, and other interested individuals with the components of diabetes care, treatment goals, and tools to evaluate the quality of care. While individual preferences, comorbidities, and other patient factors may require modification of goals, targets that are desirable for most patients with diabetes are provided. These standards are not intended to preclude more extensive evaluation and management of the patient by other specialists as needed. For more detailed information, refer to Bode (Ed.): Medical Management of Type 1 Diabetes (1), Burant (Ed): Medical Management of Type 2 Diabetes (2), and Klingensmith (Ed): Intensive Diabetes Management (3). The recommendations included are diagnostic and therapeutic actions that are known or believed to favorably affect health outcomes of patients with diabetes. A grading system (Table 1), developed by the American Diabetes Association (ADA) and modeled after existing methods, was utilized to clarify and codify the evidence that forms the basis for the recommendations. The level of evidence that supports each recommendation is listed after each recommendation using the letters A, B, C, or E.

9,618 citations