scispace - formally typeset
Search or ask a question
Author

Juan J. Fiol

Bio: Juan J. Fiol is an academic researcher from University of the Balearic Islands. The author has contributed to research in topics: Ligand & Non-covalent interactions. The author has an hindex of 21, co-authored 69 publications receiving 1307 citations. Previous affiliations of Juan J. Fiol include Spanish National Research Council.


Papers
More filters
Journal ArticleDOI
TL;DR: Two ternary complexes [Cu(ala � /gly)(isocyt)(H2O)]/H2 O( 1) and [cu(L-tyr �/gly) (Isocyt)]/3H 2 O( 2 )h ave been prepared and characterised by X-ray diffraction, optical, ESR and IR spectral data.

14 citations

Journal ArticleDOI
TL;DR: Two self-assembled hosts are formed from Ag(I) salts and bis-pyrimidyl ligands and X-ray characterized and both are able to incorporate two anions into the structure combining hydrogen bonding and electrostatic interactions.

14 citations

Journal ArticleDOI
TL;DR: This study found remarkable activity of N(6),N(6)-alkylbenzylaminopurines in the Amaranthus betacyanin bioassay, which was not associated with their binding affinity to the tested receptors.

14 citations

Journal ArticleDOI
TL;DR: An equilibrium study was carried out on the Zn(II)-L-H(+) system, which constitutes the first crystallographic evidence of an inner sphere complex with bis-adenines and results are in agreement with its formation under the conditions in which the solid complex was prepared.

13 citations

Journal ArticleDOI
TL;DR: In this article, the synthesis and X-ray characterization of four N6-amino acid/peptide-adenine-derivatives were reported, and the competition between homodimer formation by the Hoogsteen site of the adeninium cation and self-association of the carboxylic group was explored.
Abstract: In this manuscript we report the synthesis and X-ray characterization of four N6-amino acid/peptide-adenine-derivatives: N6-βAlaAde·1.5H2O (1) and N6-GABAAde·2H2O (2) and their corresponding protonated forms N6-βAlaAde·HCl (3) and N6-GABAAde·HCl (4). In (1) with a neutral adenine ring, the protonated carboxylate interacts with the N(7) and N(6)H of the neighbouring molecule. The hydrogen bond N9–H⋯N(3) and the hydrogen bonds between the water molecules are responsible for the planar and parallel disposition of the adenine rings. In (2), two different molecules are present in the crystal structure: (a) a cationic unit in which the N(7)H tautomeric adenine is protonated at N(3) and the carboxylic group interacts with N(6B)–H and N(7B) of the adjacent molecule; (b) an anionic unit, which presents the adenine ring in the N(9)H tautomeric form, where the carboxylate interacts with the N(7A)H and N(6A)H of the neighbouring adenine. In the hydrochloride form of N6-βAlaAde (compound 3) the amino acid chain with the carboxylic acid is almost orthogonal to the ring plane and exhibits protonation at N(3) of the adenine. On the other hand, in compound (4), the side chain is arranged parallel to the ring and anion (Cl−)–π interactions are responsible for a parallel ordering of the final solid state architecture. We have studied the noncovalent interactions observed in the solid state architecture energetically using DFT calculations and rationalized the interactions using Molecular Electrostatic Potential surfaces and Bader's theory of “Atoms-in-Molecules”. The main purpose of this study is to explore the competition between homodimer formation by the Hoogsteen site of the adeninium cation, and self-association of the carboxylic group or through the interaction of the carboxylic group with the adeninium cation by X-ray crystallography.

13 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The CH/π interaction is a kind of hydrogen bond operating between a soft acid CH and a soft base π-system (double and triple bonds, C6 and C5 aromatic rings, heteroaromatics, convex surfaces of fullerenes and nanotubes) as discussed by the authors.
Abstract: The nature and characteristics of the CH/π interaction are discussed by comparison with other weak molecular forces such as the CH/O and OH/π interaction. The CH/π interaction is a kind of hydrogen bond operating between a soft acid CH and a soft base π-system (double and triple bonds, C6 and C5 aromatic rings, heteroaromatics, convex surfaces of fullerenes and nanotubes). The consequences of CH/π hydrogen bonds in supramolecular chemistry are reviewed on grounds of recent crystallographic findings and database analyses. The topics include intramolecular interactions, crystal packing (organic and organometallic compounds), host/guest complexes (cavity-type inclusion compounds of cyclodextrins and synthetic macrocyclic hosts such as calixarenes, catenanes, rotaxanes and pseudorotaxanes), lattice-inclusion type clathrates (including liquid crystals, porphyrin derivatives, cyclopentadienyl compounds and C60 fullerenes), enantioselective clathrate formation, catalytic enantioface discriminating reactions and solid-state photoreaction. The implications of the CH/π concept for crystal engineering and drug design are evident.

1,262 citations

Journal ArticleDOI
TL;DR: This review describes a multidimensional treatment of molecular recognition phenomena involving aromatic rings in chemical and biological systems that facilitates the development of new advanced materials and supramolecular systems, and should inspire further utilization of interactions with aromatic rings to control the stereochemical outcome of synthetic transformations.
Abstract: This review describes a multidimensional treatment of molecular recognition phenomena involving aromatic rings in chemical and biological systems. It summarizes new results reported since the appearance of an earlier review in 2003 in host-guest chemistry, biological affinity assays and biostructural analysis, data base mining in the Cambridge Structural Database (CSD) and the Protein Data Bank (PDB), and advanced computational studies. Topics addressed are arene-arene, perfluoroarene-arene, S⋅⋅⋅aromatic, cation-π, and anion-π interactions, as well as hydrogen bonding to π systems. The generated knowledge benefits, in particular, structure-based hit-to-lead development and lead optimization both in the pharmaceutical and in the crop protection industry. It equally facilitates the development of new advanced materials and supramolecular systems, and should inspire further utilization of interactions with aromatic rings to control the stereochemical outcome of synthetic transformations.

1,221 citations

Journal ArticleDOI
TL;DR: This critical review covers advances in anion complexation in the year 2010 and highlights the applications to which anion receptors can be applied such as sensing, anion transport, control of molecular motion and gelation.
Abstract: This critical review covers advances in anion complexation in the year 2010. The review covers both organic and inorganic systems and also highlights the applications to which anion receptors can be applied such as sensing, anion transport, control of molecular motion and gelation (179 references).

583 citations