scispace - formally typeset
Search or ask a question
Author

Juan Luis Cano

Bio: Juan Luis Cano is an academic researcher from University of Cantabria. The author has contributed to research in topics: Insertion loss & Return loss. The author has an hindex of 15, co-authored 57 publications receiving 975 citations. Previous affiliations of Juan Luis Cano include Complutense University of Madrid.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present an atlas of high-resolution M-dwarf spectra and compare the spectra to atmospheric models and demonstrate that in this spectroscopic range, the large amount of absorption features compensates for the intrinsic faintness of an M7 star.
Abstract: The CARMENES radial velocity (RV) survey is observing 324 M dwarfs to search for any orbiting planets. In this paper, we present the survey sample by publishing one CARMENES spectrum for each M dwarf. These spectra cover the wavelength range 520--1710nm at a resolution of at least $R > 80,000$, and we measure its RV, H$\alpha$ emission, and projected rotation velocity. We present an atlas of high-resolution M-dwarf spectra and compare the spectra to atmospheric models. To quantify the RV precision that can be achieved in low-mass stars over the CARMENES wavelength range, we analyze our empirical information on the RV precision from more than 6500 observations. We compare our high-resolution M-dwarf spectra to atmospheric models where we determine the spectroscopic RV information content, $Q$, and signal-to-noise ratio. We find that for all M-type dwarfs, the highest RV precision can be reached in the wavelength range 700--900nm. Observations at longer wavelengths are equally precise only at the very latest spectral types (M8 and M9). We demonstrate that in this spectroscopic range, the large amount of absorption features compensates for the intrinsic faintness of an M7 star. To reach an RV precision of 1ms$^{-1}$ in very low mass M dwarfs at longer wavelengths likely requires the use of a 10m class telescope. For spectral types M6 and earlier, the combination of a red visual and a near-infrared spectrograph is ideal to search for low-mass planets and to distinguish between planets and stellar variability. At a 4m class telescope, an instrument like CARMENES has the potential to push the RV precision well below the typical jitter level of 3-4ms$^{-1}$.

184 citations

Journal ArticleDOI
TL;DR: In the CARMENES survey as discussed by the authors, the main goal was to find Earth-mass planets around nearby M-dwarf stars and to test the overall capabilities of the CarMENES instrument.
Abstract: Context: The main goal of the CARMENES survey is to find Earth-mass planets around nearby M-dwarf stars Seven M-dwarfs included in the CARMENES sample had been observed before with HIRES and HARPS and either were reported to have one short period planetary companion (GJ15A, GJ176, GJ436, GJ536 and GJ1148) or are multiple planetary systems (GJ581 and GJ876) Aims: We aim to report new precise optical radial velocity measurements for these planet hosts and test the overall capabilities of CARMENES Methods: We combined our CARMENES precise Doppler measurements with those available from HIRES and HARPS and derived new orbital parameters for the systems Bona-fide single planet systems are fitted with a Keplerian model The multiple planet systems were analyzed using a self-consistent dynamical model and their best fit orbits were tested for long-term stability Results: We confirm or provide supportive arguments for planets around all the investigated stars except for GJ15A, for which we find that the post-discovery HIRES data and our CARMENES data do not show a signal at 114 days Although we cannot confirm the super-Earth planet GJ15Ab, we show evidence for a possible long-period ($P_{\rm c}$ = 7025$_{-629}^{+972}$ d) Saturn-mass ($m_{\rm c} \sin i$ = 518$_{-58}^{+55}M_\oplus$) planet around GJ15A In addition, based on our CARMENES and HIRES data we discover a second planet around GJ1148, for which we estimate a period $P_{\rm c}$ = 5326$_{-25}^{+41}$ d, eccentricity $e_{\rm c}$ = 034$_{-006}^{+005}$ and minimum mass $m_{\rm c} \sin i$ = 681$_{-22}^{+49}M_\oplus$ Conclusions: The CARMENES optical radial velocities have similar precision and overall scatter when compared to the Doppler measurements conducted with HARPS and HIRES We conclude that CARMENES is an instrument that is up to the challenge of discovering rocky planets around low-mass stars

106 citations

Journal ArticleDOI
TL;DR: In this article, the authors find evidence for two Earth-mass planets around an ultra-cool dwarf for which the masses have been determined using radial velocities, each with a minimum mass of 4.91 and 11.4 d, respectively.
Abstract: Context. Teegarden's Star is the brightest and one of the nearest ultra-cool dwarfs in the solar neighbourhood. For its late spectral type (M7.0V), the star shows relatively little activity and is a prime target for near-infrared radial velocity surveys such as CARMENES. Aims. As part of the CARMENES search for exoplanets around M dwarfs, we obtained more than 200 radial-velocity measurements of Teegarden's Star and analysed them for planetary signals. Methods. We find periodic variability in the radial velocities of Teegarden's Star. We also studied photometric measurements to rule out stellar brightness variations mimicking planetary signals. Results. We find evidence for two planet candidates, each with $1.1M_\oplus$ minimum mass, orbiting at periods of 4.91 and 11.4 d, respectively. No evidence for planetary transits could be found in archival and follow-up photometry. Small photometric variability is suggestive of slow rotation and old age. Conclusions. The two planets are among the lowest-mass planets discovered so far, and they are the first Earth-mass planets around an ultra-cool dwarf for which the masses have been determined using radial velocities.

75 citations

Journal ArticleDOI
27 Sep 2019-Science
TL;DR: In this article, the authors reported the discovery of a giant planet around the very low-mass star GJ 3512, as determined by optical and near-infrared radial-velocity observations.
Abstract: Surveys have shown that super-Earth and Neptune-mass exoplanets are more frequent than gas giants around low-mass stars, as predicted by the core accretion theory of planet formation. We report the discovery of a giant planet around the very-low-mass star GJ 3512, as determined by optical and near-infrared radial-velocity observations. The planet has a minimum mass of 0.46 Jupiter masses, very high for such a small host star, and an eccentric 204-day orbit. Dynamical models show that the high eccentricity is most likely due to planet-planet interactions. We use simulations to demonstrate that the GJ 3512 planetary system challenges generally accepted formation theories, and that it puts constraints on the planet accretion and migration rates. Disk instabilities may be more efficient in forming planets than previously thought.

71 citations

Proceedings ArticleDOI
TL;DR: The QUIJOTE (Q-U-I JOint Tenerife) CMB Experiment will operate at the Teide Observatory with the aim of characterizing the polarisation of the CMB and other processes of Galactic and extragalactic emission in the frequency range of 10-40GHz and at large and medium angular scales as discussed by the authors.
Abstract: The QUIJOTE (Q-U-I JOint Tenerife) CMB Experiment will operate at the Teide Observatory with the aim of characterizing the polarisation of the CMB and other processes of Galactic and extragalactic emission in the frequency range of 10-40GHz and at large and medium angular scales. The first of the two QUIJOTE telescopes and the first multi-frequency (10-30GHz) instrument are already built and have been tested in the laboratory. QUIJOTE-CMB will be a valuable complement at low frequencies for the Planck mission, and will have the required sensitivity to detect a primordial gravitational-wave component if the tensor-to-scalar ratio is larger than r = 0.05. © (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

69 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s as discussed by the authors.
Abstract: The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s. We describe the scientific goals of the experiment, motivate the design, and forecast its performance. SO will measure the temperature and polarization anisotropy of the cosmic microwave background in six frequency bands: 27, 39, 93, 145, 225 and 280 GHz. The initial configuration of SO will have three small-aperture 0.5-m telescopes (SATs) and one large-aperture 6-m telescope (LAT), with a total of 60,000 cryogenic bolometers. Our key science goals are to characterize the primordial perturbations, measure the number of relativistic species and the mass of neutrinos, test for deviations from a cosmological constant, improve our understanding of galaxy evolution, and constrain the duration of reionization. The SATs will target the largest angular scales observable from Chile, mapping ~10% of the sky to a white noise level of 2 $\mu$K-arcmin in combined 93 and 145 GHz bands, to measure the primordial tensor-to-scalar ratio, $r$, at a target level of $\sigma(r)=0.003$. The LAT will map ~40% of the sky at arcminute angular resolution to an expected white noise level of 6 $\mu$K-arcmin in combined 93 and 145 GHz bands, overlapping with the majority of the LSST sky region and partially with DESI. With up to an order of magnitude lower polarization noise than maps from the Planck satellite, the high-resolution sky maps will constrain cosmological parameters derived from the damping tail, gravitational lensing of the microwave background, the primordial bispectrum, and the thermal and kinematic Sunyaev-Zel'dovich effects, and will aid in delensing the large-angle polarization signal to measure the tensor-to-scalar ratio. The survey will also provide a legacy catalog of 16,000 galaxy clusters and more than 20,000 extragalactic sources.

542 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the motivations underlying the need to introduce such interaction, its influence on the background dynamics and how it modifies the evolution of linear perturbations and test models using the most recent observational data and find that the interaction is compatible with the current astronomical and cosmological data.
Abstract: Models where dark matter and dark energy interact with each other have been proposed to solve the coincidence problem. We review the motivations underlying the need to introduce such interaction, its influence on the background dynamics and how it modifies the evolution of linear perturbations. We test models using the most recent observational data and we find that the interaction is compatible with the current astronomical and cosmological data. Finally, we describe the forthcoming data sets from current and future facilities that are being constructed or designed that will allow a clearer understanding of the physics of the dark sector.

506 citations

Journal ArticleDOI
Ansgar Reiners1, Mathias Zechmeister1, Jose A. Caballero2, Ignasi Ribas3  +177 moreInstitutions (18)
TL;DR: In this article, the CARMENES radial velocity (RV) survey is observing 324 M dwarfs to search for any orbiting planets and the authors present an atlas of high resolution M-dwarf spectra and compare the spectra to atmospheric models.
Abstract: The CARMENES radial velocity (RV) survey is observing 324 M dwarfs to search for any orbiting planets. In this paper, we present the survey sample by publishing one CARMENES spectrum for each M dwarf. These spectra cover the wavelength range 520–1710 nm at a resolution of at least R >80 000, and we measure its RV, Hα emission, and projected rotation velocity. We present an atlas of high-resolution M-dwarf spectra and compare the spectra to atmospheric models. To quantify the RV precision that can be achieved in low-mass stars over the CARMENES wavelength range, we analyze our empirical information on the RV precision from more than 6500 observations. We compare our high-resolution M-dwarf spectra to atmospheric models where we determine the spectroscopic RV information content, Q , and signal-to-noise ratio. We find that for all M-type dwarfs, the highest RV precision can be reached in the wavelength range 700–900 nm. Observations at longer wavelengths are equally precise only at the very latest spectral types (M8 and M9). We demonstrate that in this spectroscopic range, the large amount of absorption features compensates for the intrinsic faintness of an M7 star. To reach an RV precision of 1 m s−1 in very low mass M dwarfs at longer wavelengths likely requires the use of a 10 m class telescope. For spectral types M6 and earlier, the combination of a red visual and a near-infrared spectrograph is ideal to search for low-mass planets and to distinguish between planets and stellar variability. At a 4 m class telescope, an instrument like CARMENES has the potential to push the RV precision well below the typical jitter level of 3–4 m s−1 .

199 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present an atlas of high-resolution M-dwarf spectra and compare the spectra to atmospheric models and demonstrate that in this spectroscopic range, the large amount of absorption features compensates for the intrinsic faintness of an M7 star.
Abstract: The CARMENES radial velocity (RV) survey is observing 324 M dwarfs to search for any orbiting planets. In this paper, we present the survey sample by publishing one CARMENES spectrum for each M dwarf. These spectra cover the wavelength range 520--1710nm at a resolution of at least $R > 80,000$, and we measure its RV, H$\alpha$ emission, and projected rotation velocity. We present an atlas of high-resolution M-dwarf spectra and compare the spectra to atmospheric models. To quantify the RV precision that can be achieved in low-mass stars over the CARMENES wavelength range, we analyze our empirical information on the RV precision from more than 6500 observations. We compare our high-resolution M-dwarf spectra to atmospheric models where we determine the spectroscopic RV information content, $Q$, and signal-to-noise ratio. We find that for all M-type dwarfs, the highest RV precision can be reached in the wavelength range 700--900nm. Observations at longer wavelengths are equally precise only at the very latest spectral types (M8 and M9). We demonstrate that in this spectroscopic range, the large amount of absorption features compensates for the intrinsic faintness of an M7 star. To reach an RV precision of 1ms$^{-1}$ in very low mass M dwarfs at longer wavelengths likely requires the use of a 10m class telescope. For spectral types M6 and earlier, the combination of a red visual and a near-infrared spectrograph is ideal to search for low-mass planets and to distinguish between planets and stellar variability. At a 4m class telescope, an instrument like CARMENES has the potential to push the RV precision well below the typical jitter level of 3-4ms$^{-1}$.

184 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigate the capabilities of various ground, balloon and space-based CMB experiments to clean contamination due to polarized synchrotron and dust from raw multi-frequency data and remove lensing from the resulting co-added CMB maps (either using iterative CMB-only techniques or through cross-correlation with external data).
Abstract: Recent results from the BICEP, Keck Array and Planck Collaborations demonstrate that Galactic foregrounds are an unavoidable obstacle in the search for evidence of inflationary gravitational waves in the cosmic microwave background (CMB) polarization. Beyond the foregrounds, the effect of lensing by intervening large-scale structure further obscures all but the strongest inflationary signals permitted by current data. With a plethora of ongoing and upcoming experiments aiming to measure these signatures, careful and self-consistent consideration of experiments' foreground- and lensing-removal capabilities is critical in obtaining credible forecasts of their performance. We investigate the capabilities of instruments such as Advanced ACTPol, BICEP3 and Keck Array, CLASS, EBEX10K, PIPER, Simons Array, SPT-3G and SPIDER, and projects as COrE+, LiteBIRD-ext, PIXIE and Stage IV, to clean contamination due to polarized synchrotron and dust from raw multi-frequency data, and remove lensing from the resulting co-added CMB maps (either using iterative CMB-only techniques or through cross-correlation with external data). Incorporating these effects, we present forecasts for the constraining power of these experiments in terms of inflationary physics, the neutrino sector, and dark energy parameters. Made publicly available through an online interface, this tool enables the next generation of CMB experiments to foreground-proof their designs, optimize their frequency coverage to maximize scientific output, and determine where cross-experimental collaboration would be most beneficial. We find that analyzing data from ground, balloon and space instruments in complementary combinations can significantly improve component separation performance, delensing, and cosmological constraints over individual datasets. In particular, we find that a combination of post-2020 ground- and space-based experiments could achieve constraints such as σ(r)~1.3×10(−)(4), σ(n(t))~0.03, σ( n(s) )~1.8×10(−)(3), σ(α(s))~1.7×10(−)(3), σ( M(ν) )~31 meV, σ( w )~0.09, σ( w(0) )~ 0.25, 0σ( wa )~ 0.5, σ( N(eff) )~0.024 and σ( Ω(k) )~1.5×10(−)(3), after component separation and iterative delensing.

183 citations