scispace - formally typeset
Search or ask a question
Author

Juan M. Feliu

Bio: Juan M. Feliu is an academic researcher from University of Alicante. The author has contributed to research in topics: Platinum & Adsorption. The author has an hindex of 80, co-authored 544 publications receiving 23147 citations. Previous affiliations of Juan M. Feliu include Bundeswehr University Munich & Pontifical Catholic University of Puerto Rico.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a detailed kinetic study of hydrogen adsorption and evolution on Pt(111) in a wide pH range is presented, highlighting the role of reorganization of interfacial water to accommodate charge transfer through the electric double layer, the energetics of which are controlled by how strongly water interacts with the interfacial field.
Abstract: Hydrogen evolution on platinum is a key reaction for electrocatalysis and sustainable energy storage, yet its pH-dependent kinetics are not fully understood. Here we present a detailed kinetic study of hydrogen adsorption and evolution on Pt(111) in a wide pH range. Electrochemical measurements show that hydrogen adsorption and hydrogen evolution are both slow in alkaline media, consistent with the observation of a shift in the rate-determining step for hydrogen evolution. Adding nickel to the Pt(111) surface lowers the barrier for hydrogen adsorption in alkaline solutions and thereby enhances the hydrogen evolution rate. We explain these observations with a model that highlights the role of the reorganization of interfacial water to accommodate charge transfer through the electric double layer, the energetics of which are controlled by how strongly water interacts with the interfacial field. The model is supported by laser-induced temperature-jump measurements. Our model sheds light on the origin of the slow kinetics for the hydrogen evolution reaction in alkaline media. Despite its role in electrocatalysis and hydrogen generation, a complete understanding of the hydrogen evolution reaction on platinum remains elusive. Here, a detailed kinetic study of hydrogen adsorption and evolution on Pt(111) highlights the role of interfacial water reorganization in the hydrogen adsorption step.

685 citations

Journal ArticleDOI
TL;DR: In this paper, the authors employ in situ electrochemical surface-enhanced Raman spectroscopy (SERS) and density functional theory (DFT) calculation techniques to examine the ORR process at Pt(hkl) surfaces.
Abstract: Developing an understanding of structure–activity relationships and reaction mechanisms of catalytic processes is critical to the successful design of highly efficient catalysts. As a fundamental reaction in fuel cells, elucidation of the oxygen reduction reaction (ORR) mechanism at Pt(hkl) surfaces has remained a significant challenge for researchers. Here, we employ in situ electrochemical surface-enhanced Raman spectroscopy (SERS) and density functional theory (DFT) calculation techniques to examine the ORR process at Pt(hkl) surfaces. Direct spectroscopic evidence for ORR intermediates indicates that, under acidic conditions, the pathway of ORR at Pt(111) occurs through the formation of HO2*, whereas at Pt(110) and Pt(100) it occurs via the generation of OH*. However, we propose that the pathway of the ORR under alkaline conditions at Pt(hkl) surfaces mainly occurs through the formation of O2−. Notably, these results demonstrate that the SERS technique offers an effective and reliable way for real-time investigation of catalytic processes at atomically flat surfaces not normally amenable to study with Raman spectroscopy. The oxygen reduction reaction, catalysed by platinum, is a crucial process in the operation of fuel cells, but the mechanistic pathways through which it occurs remain a matter for debate. Here, the authors use in situ Raman spectroscopy to identify key intermediates for this reaction at different atomically flat platinum surfaces, shedding light on the mechanism.

404 citations

Journal ArticleDOI
TL;DR: In this article, the effect of the crystalline defects on the rate of the reaction by using a series of stepped surfaces was investigated using chronoamperometry and an apparent intrinsic rate constant was determined.
Abstract: The kinetics of the electrochemical oxidation of a CO adlayer on Pt[n(111)×(111)] electrodes in 0.5 M H2SO4 has been studied using chronoamperometry. The objective is to elucidate the effect of the crystalline defects on the rate of the reaction by using a series of stepped surfaces. The reaction kinetics of the main oxidative process can be modeled using the mean-field approximation for the Langmuir−Hinshelwood mechanism, implying fast diffusion of adsorbed CO on the Pt[n(111)×(111)] surfaces under electrochemical conditions. The apparent rate constant for the electrochemical CO oxidation, determined by a fitting of the experimental data with the mean-field model, is found to be proportional to the step fraction (1/n) for the surfaces with n > 5, proving steps to be the active sites for the CO adlayer oxidation. An apparent intrinsic rate constant is determined. The potential dependence of the apparent rate constants is found to be structure insensitive with a Tafel slope of ca. 80 mV/dec, suggesting the...

356 citations

Journal ArticleDOI
TL;DR: The quantitative analysis of the different surface sites on platinum samples is attempted from pure voltammetric data, and it is shown that irreversibly-adsorbed bismuth and tellurium have been revealed to be sensitive to the presence of (111) terrace domains of different width whereas almost all sites involved in (100) ordered domains have been characterized through germanium adatoms.
Abstract: The quantitative analysis of the different surface sites on platinum samples is attempted from pure voltammetric data. This analysis requires independent knowledge of the fraction of two-dimensional (111) and (100) domains. Specific site-probe reactions are employed to achieve this goal. Irreversibly-adsorbed bismuth and tellurium have been revealed to be sensitive to the presence of (111) terrace domains of different width whereas almost all sites involved in (100) ordered domains have been characterized through germanium adatoms. The experimental protocol follows that used with well-defined single-crystal electrodes and, therefore, requires careful control of the surface cleanliness. Platinum basal planes and their vicinal stepped surfaces have been employed to obtain calibration plots between the charge density measured under the adatom redox peak, specific for the type of surface site, and the corresponding terrace size. The evaluation of the (100) bidimensional domains can also be achieved using the voltammetric profiles, once the fraction of (111) ordered domains present in the polyoriented platinum has been determined and their featureless contribution has been subtracted from the whole voltammetric response. Using that curve, it is possible to perform a deconvolution of the adsorption states of the polycrystalline sample different from those related to (111) domains. The fraction of (100)-related states in the deconvoluted voltammogram can then be compared to that expected from the independent estimation coming from the charge involved in the redox process undergone by the irreversibly-adsorbed germanium and thus check the result of the deconvolution. The information about the surface-site distribution can also be applied to analyze the voltammetric profile of nanocrystalline platinum electrodes.

337 citations

Journal ArticleDOI
TL;DR: In this article, it is shown that an elementary step involving the simultaneous release or uptake of more than one electron is highly improbable in view of the absolute rate theory of electron transfer of Marcus; the hardly satisfiable requirements for the occurrence of such an event are examined.
Abstract: The transfer coefficient α is a quantity that is commonly employed in the kinetic investigation of electrode processes. In the 3 rd edition of the IUPAC Green Book, the cathodic transfer coefficient α c is defined as -(RT/nF)(dlnk c /dE), where k c is the electroreduction rate constant, E is the applied potential, and R, T, and F have their usual significance. This definition is equivalent to the other, -(RT/nF)(dln|j c |/dE), where j c is the cathodic current density corrected for any changes in the reactant concentration at the electrode surface with respect to its bulk value. The anodic transfer coefficient α a is defined similarly, by simply replacing j c with the anodic current density j a and the minus sign with the plus sign. It is shown that this definition applies only to an electrode reaction that consists of a single elementary step involving the simultaneous uptake of n electrons from the electrode in the case of α c , or their release to the electrode in the case of α a . However, an elementary step involving the simultaneous release or uptake of more than one electron is regarded as highly improbable in view of the absolute rate theory of electron transfer of Marcus; the hardly satisfiable requirements for the occurrence of such an event are examined. Moreover, the majority of electrode reactions do not consist of a single elementary step; rather, they are multistep, multi-electron processes. The uncriti- cal application of the above definitions of α c and α a has led researchers to provide unwarranted mechanistic interpretations of electrode reactions. In fact, the only directly measurable experimental quantity is dln|j|/ dE, which can be made dimensionless upon multiplication by RT/F, yielding (RT/F)(dln|j|/dE). One common source of misinterpretation consists in setting this experimental quantity equal to αn, according to the above definition of the transfer coefficient, and in trying to estimate n from αn, upon ascribing an arbitrary value to α, often close to 0.5. The resulting n value is then identified with the number of electrons involved in a hypo- thetical rate-determining step or with that involved in the overall electrode reaction. A few examples of these unwarranted mechanistic interpretations are reported. In view of the above considerations, it is proposed to define the cathodic and anodic transfer coefficients by the quantities α c = -(RT/F)(dln|j c |/dE) and α a = (RT/F) (dlnj a /dE), which are independent of any mechanistic consideration.

333 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
13 Jan 2017-Science
TL;DR: A unified theoretical framework highlights the need for catalyst design strategies that selectively stabilize distinct reaction intermediates relative to each other, and opens up opportunities and approaches to develop higher-performance electrocatalysts for a wide range of reactions.
Abstract: BACKGROUND With a rising global population, increasing energy demands, and impending climate change, major concerns have been raised over the security of our energy future. Developing sustainable, fossil-free pathways to produce fuels and chemicals of global importance could play a major role in reducing carbon dioxide emissions while providing the feedstocks needed to make the products we use on a daily basis. One prospective goal is to develop electrochemical conversion processes that can convert molecules in the atmosphere (e.g., water, carbon dioxide, and nitrogen) into higher-value products (e.g., hydrogen, hydrocarbons, oxygenates, and ammonia) by coupling to renewable energy. Electrocatalysts play a key role in these energy conversion technologies because they increase the rate, efficiency, and selectivity of the chemical transformations involved. Today’s electrocatalysts, however, are inadequate. The grand challenge is to develop advanced electrocatalysts with the enhanced performance needed to enable widespread penetration of clean energy technologies. ADVANCES Over the past decade, substantial progress has been made in understanding several key electrochemical transformations, particularly those that involve water, hydrogen, and oxygen. The combination of theoretical and experimental studies working in concert has proven to be a successful strategy in this respect, yielding a framework to understand catalytic trends that can ultimately provide rational guidance toward the development of improved catalysts. Catalyst design strategies that aim to increase the number of active sites and/or increase the intrinsic activity of each active site have been successfully developed. The field of hydrogen evolution, for example, has seen important breakthroughs over the years in the development of highly active non–precious metal catalysts in acid. Notable advancements have also been made in the design of oxygen reduction and evolution catalysts, although there remains substantial room for improvement. The combination of theory and experiment elucidates the remaining challenges in developing further improved catalysts, often involving scaling relations among reactive intermediates. This understanding serves as an initial platform to design strategies to circumvent technical obstacles, opening up opportunities and approaches to develop higher-performance electrocatalysts for a wide range of reactions. OUTLOOK A systematic framework of combining theory and experiment in electrocatalysis helps to uncover broader governing principles that can be used to understand a wide variety of electrochemical transformations. These principles can be applied to other emerging and promising clean energy reactions, including hydrogen peroxide production, carbon dioxide reduction, and nitrogen reduction, among others. Although current paradigms for catalyst development have been helpful to date, a number of challenges need to be successfully addressed in order to achieve major breakthroughs. One important frontier, for example, is the development of both experimental and computational methods that can rapidly elucidate reaction mechanisms on broad classes of materials and in a wide range of operating conditions (e.g., pH, solvent, electrolyte). Such efforts would build on current frameworks for understanding catalysis to provide the deeper insights needed to fine-tune catalyst properties in an optimal manner. The long-term goal is to continue improving the activity and selectivity of these catalysts in order to realize the prospects of using renewable energy to provide the fuels and chemicals that we need for a sustainable energy future.

7,062 citations

Journal ArticleDOI
TL;DR: The emphasis of this review is on the origin of the electrocatalytic activity of nanostructured catalysts toward a series of key clean energy conversion reactions by correlating the apparent electrode performance with their intrinsic electrochemical properties.
Abstract: A fundamental change has been achieved in understanding surface electrochemistry due to the profound knowledge of the nature of electrocatalytic processes accumulated over the past several decades and to the recent technological advances in spectroscopy and high resolution imaging. Nowadays one can preferably design electrocatalysts based on the deep theoretical knowledge of electronic structures, via computer-guided engineering of the surface and (electro)chemical properties of materials, followed by the synthesis of practical materials with high performance for specific reactions. This review provides insights into both theoretical and experimental electrochemistry toward a better understanding of a series of key clean energy conversion reactions including oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The emphasis of this review is on the origin of the electrocatalytic activity of nanostructured catalysts toward the aforementioned reactions by correlating the apparent electrode performance with their intrinsic electrochemical properties. Also, a rational design of electrocatalysts is proposed starting from the most fundamental aspects of the electronic structure engineering to a more practical level of nanotechnological fabrication.

3,918 citations

Journal ArticleDOI
TL;DR: A density functional theory-based, high-throughput screening scheme that successfully uses these strategies to identify a new electrocatalyst for the hydrogen evolution reaction (HER), which is found to have a predicted activity comparable to, or even better than, pure Pt, the archetypical HER catalyst.
Abstract: The pace of materials discovery for heterogeneous catalysts and electrocatalysts could, in principle, be accelerated by the development of efficient computational screening methods. This would require an integrated approach, where the catalytic activity and stability of new materials are evaluated and where predictions are benchmarked by careful synthesis and experimental tests. In this contribution, we present a density functional theory-based, high-throughput screening scheme that successfully uses these strategies to identify a new electrocatalyst for the hydrogen evolution reaction (HER). The activity of over 700 binary surface alloys is evaluated theoretically; the stability of each alloy in electrochemical environments is also estimated. BiPt is found to have a predicted activity comparable to, or even better than, pure Pt, the archetypical HER catalyst. This alloy is synthesized and tested experimentally and shows improved HER performance compared with pure Pt, in agreement with the computational screening results.

3,134 citations