scispace - formally typeset
Search or ask a question
Author

Juan M. Haut

Other affiliations: University of Extremadura
Bio: Juan M. Haut is an academic researcher from National University of Distance Education. The author has contributed to research in topics: Hyperspectral imaging & Computer science. The author has an hindex of 18, co-authored 62 publications receiving 1652 citations. Previous affiliations of Juan M. Haut include University of Extremadura.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of the current-state-of-the-art in DL for HSI classification, analyzing the strengths and weaknesses of the most widely used classifiers in the literature is provided, providing an exhaustive comparison of the discussed techniques.
Abstract: Advances in computing technology have fostered the development of new and powerful deep learning (DL) techniques, which have demonstrated promising results in a wide range of applications. Particularly, DL methods have been successfully used to classify remotely sensed data collected by Earth Observation (EO) instruments. Hyperspectral imaging (HSI) is a hot topic in remote sensing data analysis due to the vast amount of information comprised by this kind of images, which allows for a better characterization and exploitation of the Earth surface by combining rich spectral and spatial information. However, HSI poses major challenges for supervised classification methods due to the high dimensionality of the data and the limited availability of training samples. These issues, together with the high intraclass variability (and interclass similarity) –often present in HSI data– may hamper the effectiveness of classifiers. In order to solve these limitations, several DL-based architectures have been recently developed, exhibiting great potential in HSI data interpretation. This paper provides a comprehensive review of the current-state-of-the-art in DL for HSI classification, analyzing the strengths and weaknesses of the most widely used classifiers in the literature. For each discussed method, we provide quantitative results using several well-known and widely used HSI scenes, thus providing an exhaustive comparison of the discussed techniques. The paper concludes with some remarks and hints about future challenges in the application of DL techniques to HSI classification. The source codes of the methods discussed in this paper are available from: https://github.com/mhaut/hyperspectral_deeplearning_review .

534 citations

Journal ArticleDOI
TL;DR: A new CNN architecture for the classification of hyperspectral images is presented, a 3-D network that uses both spectral and spatial information and implements a border mirroring strategy to effectively process border areas in the image.
Abstract: Artificial neural networks (ANNs) have been widely used for the analysis of remotely sensed imagery. In particular, convolutional neural networks (CNNs) are gaining more and more attention in this field. CNNs have proved to be very effective in areas such as image recognition and classification, especially for the classification of large sets composed by two-dimensional images. However, their application to multispectral and hyperspectral images faces some challenges, especially related to the processing of the high-dimensional information contained in multidimensional data cubes. This results in a significant increase in computation time. In this paper, we present a new CNN architecture for the classification of hyperspectral images. The proposed CNN is a 3-D network that uses both spectral and spatial information. It also implements a border mirroring strategy to effectively process border areas in the image, and has been efficiently implemented using graphics processing units (GPUs). Our experimental results indicate that the proposed network performs accurately and efficiently, achieving a reduction of the computation time and increasing the accuracy in the classification of hyperspectral images when compared to other traditional ANN techniques.

446 citations

Journal ArticleDOI
TL;DR: A CNN model extension is developed that redefines the concept of capsule units to become spectral–spatial units specialized in classifying remotely sensed HSI data and is able to provide competitive advantages in terms of both classification accuracy and computational time.
Abstract: Convolutional neural networks (CNNs) have recently exhibited an excellent performance in hyperspectral image classification tasks. However, the straightforward CNN-based network architecture still finds obstacles when effectively exploiting the relationships between hyperspectral imaging (HSI) features in the spectral–spatial domain, which is a key factor to deal with the high level of complexity present in remotely sensed HSI data. Despite the fact that deeper architectures try to mitigate these limitations, they also find challenges with the convergence of the network parameters, which eventually limit the classification performance under highly demanding scenarios. In this paper, we propose a new CNN architecture based on spectral–spatial capsule networks in order to achieve a highly accurate classification of HSIs while significantly reducing the network design complexity. Specifically, based on Hinton’s capsule networks, we develop a CNN model extension that redefines the concept of capsule units to become spectral–spatial units specialized in classifying remotely sensed HSI data. The proposed model is composed by several building blocks, called spectral–spatial capsules, which are able to learn HSI spectral–spatial features considering their corresponding spatial positions in the scene, their associated spectral signatures, and also their possible transformations. Our experiments, conducted using five well-known HSI data sets and several state-of-the-art classification methods, reveal that our HSI classification approach based on spectral–spatial capsules is able to provide competitive advantages in terms of both classification accuracy and computational time.

274 citations

Journal ArticleDOI
TL;DR: A new deep CNN architecture specially designed for the HSI data is presented to improve the spectral–spatial features uncovered by the convolutional filters of the network and is able to provide competitive advantages over the state-of-the-art HSI classification methods.
Abstract: Convolutional neural networks (CNNs) exhibit good performance in image processing tasks, pointing themselves as the current state-of-the-art of deep learning methods. However, the intrinsic complexity of remotely sensed hyperspectral images still limits the performance of many CNN models. The high dimensionality of the HSI data, together with the underlying redundancy and noise, often makes the standard CNN approaches unable to generalize discriminative spectral–spatial features. Moreover, deeper CNN architectures also find challenges when additional layers are added, which hampers the network convergence and produces low classification accuracies. In order to mitigate these issues, this paper presents a new deep CNN architecture specially designed for the HSI data. Our new model pursues to improve the spectral–spatial features uncovered by the convolutional filters of the network. Specifically, the proposed residual-based approach gradually increases the feature map dimension at all convolutional layers, grouped in pyramidal bottleneck residual blocks, in order to involve more locations as the network depth increases while balancing the workload among all units, preserving the time complexity per layer. It can be seen as a pyramid, where the deeper the blocks, the more feature maps can be extracted. Therefore, the diversity of high-level spectral–spatial attributes can be gradually increased across layers to enhance the performance of the proposed network with the HSI data. Our experiments, conducted using four well-known HSI data sets and 10 different classification techniques, reveal that our newly developed HSI pyramidal residual model is able to provide competitive advantages (in terms of both classification accuracy and computational time) over the state-of-the-art HSI classification methods

254 citations

Journal ArticleDOI
TL;DR: A new AL-guided classification model is developed that exploits both the spectral information and the spatial-contextual information in the hyperspectral data that makes use of recently developed Bayesian CNNs.
Abstract: Hyperspectral imaging is a widely used technique in remote sensing in which an imaging spectrometer collects hundreds of images (at different wavelength channels) for the same area on the surface of the earth. In the last two decades, several methods (unsupervised, supervised, and semisupervised) have been proposed to deal with the hyperspectral image classification problem. Supervised techniques have been generally more popular, despite the fact that it is difficult to collect labeled samples in real scenarios. In particular, deep neural networks, such as convolutional neural networks (CNNs), have recently shown a great potential to yield high performance in the hyperspectral image classification. However, these techniques require sufficient labeled samples in order to perform properly and generalize well. Obtaining labeled data is expensive and time consuming, and the high dimensionality of hyperspectral data makes it difficult to design classifiers based on limited samples (for instance, CNNs overfit quickly with small training sets). Active learning (AL) can deal with this problem by training the model with a small set of labeled samples that is reinforced by the acquisition of new unlabeled samples. In this paper, we develop a new AL-guided classification model that exploits both the spectral information and the spatial-contextual information in the hyperspectral data. The proposed model makes use of recently developed Bayesian CNNs. Our newly developed technique provides robust classification results when compared with other state-of-the-art techniques for hyperspectral image classification.

230 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

01 Jan 2016
TL;DR: The remote sensing and image interpretation is universally compatible with any devices to read and is available in the digital library an online access to it is set as public so you can get it instantly.
Abstract: Thank you very much for downloading remote sensing and image interpretation. As you may know, people have look hundreds times for their favorite novels like this remote sensing and image interpretation, but end up in malicious downloads. Rather than reading a good book with a cup of tea in the afternoon, instead they are facing with some malicious virus inside their computer. remote sensing and image interpretation is available in our digital library an online access to it is set as public so you can get it instantly. Our book servers spans in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Merely said, the remote sensing and image interpretation is universally compatible with any devices to read.

1,802 citations

Posted Content
TL;DR: A comprehensive review of recent pioneering efforts in semantic and instance segmentation, including convolutional pixel-labeling networks, encoder-decoder architectures, multiscale and pyramid-based approaches, recurrent networks, visual attention models, and generative models in adversarial settings are provided.
Abstract: Image segmentation is a key topic in image processing and computer vision with applications such as scene understanding, medical image analysis, robotic perception, video surveillance, augmented reality, and image compression, among many others. Various algorithms for image segmentation have been developed in the literature. Recently, due to the success of deep learning models in a wide range of vision applications, there has been a substantial amount of works aimed at developing image segmentation approaches using deep learning models. In this survey, we provide a comprehensive review of the literature at the time of this writing, covering a broad spectrum of pioneering works for semantic and instance-level segmentation, including fully convolutional pixel-labeling networks, encoder-decoder architectures, multi-scale and pyramid based approaches, recurrent networks, visual attention models, and generative models in adversarial settings. We investigate the similarity, strengths and challenges of these deep learning models, examine the most widely used datasets, report performances, and discuss promising future research directions in this area.

950 citations

Journal ArticleDOI
TL;DR: A hybrid spectral CNN (HybridSN) for HSI classification is proposed that reduces the complexity of the model compared to the use of 3-D-CNN alone and is compared with the state-of-the-art hand-crafted as well as end-to-end deep learning-based methods.
Abstract: Hyperspectral image (HSI) classification is widely used for the analysis of remotely sensed images. Hyperspectral imagery includes varying bands of images. Convolutional neural network (CNN) is one of the most frequently used deep learning-based methods for visual data processing. The use of CNN for HSI classification is also visible in recent works. These approaches are mostly based on 2-D CNN. On the other hand, the HSI classification performance is highly dependent on both spatial and spectral information. Very few methods have used the 3-D-CNN because of increased computational complexity. This letter proposes a hybrid spectral CNN (HybridSN) for HSI classification. In general, the HybridSN is a spectral–spatial 3-D-CNN followed by spatial 2-D-CNN. The 3-D-CNN facilitates the joint spatial–spectral feature representation from a stack of spectral bands. The 2-D-CNN on top of the 3-D-CNN further learns more abstract-level spatial representation. Moreover, the use of hybrid CNNs reduces the complexity of the model compared to the use of 3-D-CNN alone. To test the performance of this hybrid approach, very rigorous HSI classification experiments are performed over Indian Pines, University of Pavia, and Salinas Scene remote sensing data sets. The results are compared with the state-of-the-art hand-crafted as well as end-to-end deep learning-based methods. A very satisfactory performance is obtained using the proposed HybridSN for HSI classification. The source code can be found at https://github.com/gokriznastic/HybridSN .

775 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a systematic review of deep learning-based hyperspectral image classification literatures and compare several strategies for this topic, which can provide some guidelines for future studies on this topic.
Abstract: Hyperspectral image (HSI) classification has become a hot topic in the field of remote sensing. In general, the complex characteristics of hyperspectral data make the accurate classification of such data challenging for traditional machine learning methods. In addition, hyperspectral imaging often deals with an inherently nonlinear relation between the captured spectral information and the corresponding materials. In recent years, deep learning has been recognized as a powerful feature-extraction tool to effectively address nonlinear problems and widely used in a number of image processing tasks. Motivated by those successful applications, deep learning has also been introduced to classify HSIs and demonstrated good performance. This survey paper presents a systematic review of deep learning-based HSI classification literatures and compares several strategies for this topic. Specifically, we first summarize the main challenges of HSI classification which cannot be effectively overcome by traditional machine learning methods, and also introduce the advantages of deep learning to handle these problems. Then, we build a framework which divides the corresponding works into spectral-feature networks, spatial-feature networks, and spectral-spatial-feature networks to systematically review the recent achievements in deep learning-based HSI classification. In addition, considering the fact that available training samples in the remote sensing field are usually very limited and training deep networks require a large number of samples, we include some strategies to improve classification performance, which can provide some guidelines for future studies on this topic. Finally, several representative deep learning-based classification methods are conducted on real HSIs in our experiments.

761 citations