scispace - formally typeset
Search or ask a question
Author

Juan Manuel Górriz

Bio: Juan Manuel Górriz is an academic researcher from University of Granada. The author has contributed to research in topics: Support vector machine & Computer science. The author has an hindex of 43, co-authored 360 publications receiving 6429 citations. Previous affiliations of Juan Manuel Górriz include University of Cádiz & University of Cambridge.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, deep belief networks are applied on brain regions defined by the Automated Anatomical Labeling (AAL) atlas and the final prediction is determined by a voting scheme, where discriminative features are computed in an unsupervised fashion.
Abstract: Computer Aided Diagnosis (CAD) constitutes an important tool for the early diagnosis of Alzheimer's Disease (AD), which, in turn, allows the application of treatments that can be simpler and more likely to be effective. This paper explores the construction of classification methods based on deep learning architectures applied on brain regions defined by the Automated Anatomical Labeling (AAL). Gray Matter (GM) images from each brain area have been split into 3D patches according to the regions defined by the AAL atlas and these patches are used to train different deep belief networks. An ensemble of deep belief networks is then composed where the final prediction is determined by a voting scheme. Two deep learning based structures and four different voting schemes are implemented and compared, giving as a result a potent classification architecture where discriminative features are computed in an unsupervised fashion. The resulting method has been evaluated using a large dataset from the Alzheimer's disease Neuroimaging Initiative (ADNI). Classification results assessed by cross-validation prove that the proposed method is not only valid for differentiate between controls (NC) and AD images, but it also provides good performances when tested for the more challenging case of classifying Mild Cognitive Impairment (MCI) Subjects. In particular, the classification architecture provides accuracy values up to 0.90 and AUC of 0.95 for NC/AD classification, 0.84 and AUC of 0.91 for stable MCI/AD classification and 0.83 and AUC of 0.95 for NC/MCI converters classification.

307 citations

Book ChapterDOI
01 Jun 2007
TL;DR: This chapter shows a comprehensive approximation to the main challenges in voice activity detection, the different solutions that have been reported in a complete review of the state of the art and the evaluation frameworks that are normally used.
Abstract: An important drawback affecting most of the speech processing systems is the environmental noise and its harmful effect on the system performance. Examples of such systems are the new wireless communications voice services or digital hearing aid devices. In speech recognition, there are still technical barriers inhibiting such systems from meeting the demands of modern applications. Numerous noise reduction techniques have been developed to palliate the effect of the noise on the system performance and often require an estimate of the noise statistics obtained by means of a precise voice activity detector (VAD). Speech/non-speech detection is an unsolved problem in speech processing and affects numerous applications including robust speech recognition (Karray and Marting, 2003; Ramirez et al. 2003), discontinuous transmission (ITU, 1996; ETSI, 1999), real-time speech transmission on the Internet (Sangwan et al., 2002) or combined noise reduction and echo cancellation schemes in the context of telephony (Basbug et al., 2004; Gustafsson et al., 2002). The speech/non-speech classification task is not as trivial as it appears, and most of the VAD algorithms fail when the level of background noise increases. During the last decade, numerous researchers have developed different strategies for detecting speech on a noisy signal (Sohn et al., 1999; Cho and Kondoz, 2001; Gazor and Zhang, 2003, Armani et al., 2003) and have evaluated the influence of the VAD effectiveness on the performance of speech processing systems (Bouquin-Jeannes and Faucon, 1995). Most of the approaches have focussed on the development of robust algorithms with special attention being paid to the derivation and study of noise robust features and decision rules (Woo et al., 2000; Li et al., 2002; Marzinzik and Kollmeier, 2002). The different VAD methods include those based on energy thresholds (Woo et al., 2000), pitch detection (Chengalvarayan, 1999), spectrum analysis (Marzinzik and Kollmeier, 2002), zero-crossing rate (ITU, 1996), periodicity measure (Tucker, 1992), higher order statistics in the LPC residual domain (Nemer et al., 2001) or combinations of different features (ITU, 1993; ETSI, 1999; Tanyer and Ozer, 2000). This chapter shows a comprehensive approximation to the main challenges in voice activity detection, the different solutions that have been reported in a complete review of the state of the art and the evaluation frameworks that are normally used. The application of VADs for speech coding, speech enhancement and robust speech recognition systems is shown and discussed. Three different VAD methods are described and compared to standardized and

256 citations

Journal ArticleDOI
TL;DR: The proposed FGCNet model can assist radiologists to rapidly detect COVID-19 from chest CT images and gives better performance than all 15 state-of-the-art methods.

250 citations

Journal ArticleDOI
TL;DR: A new CAD system that allows the early AD diagnosis using tissue-segmented brain images and is based on several multivariate approaches, such as partial least squares (PLS) and principal component analysis (PCA), which aims to discriminate between AD, mild cognitive impairment (MCI) and elderly normal control (NC) subjects.

213 citations

Journal ArticleDOI
TL;DR: The BDR-CNN-GCN showed improved performance compared to five proposed neural network models and 15 state-of-the-art breast cancer detection approaches, proving to be an effective method for data augmentation and improved detection of malignant breast masses.
Abstract: Aim In a pilot study to improve detection of malignant lesions in breast mammograms, we aimed to develop a new method called BDR-CNN-GCN, combining two advanced neural networks: (i) graph convolutional network (GCN); and (ii) convolutional neural network (CNN). Method We utilised a standard 8-layer CNN, then integrated two improvement techniques: (i) batch normalization (BN) and (ii) dropout (DO). Finally, we utilized rank-based stochastic pooling (RSP) to substitute the traditional max pooling. This resulted in BDR-CNN, which is a combination of CNN, BN, DO, and RSP. This BDR-CNN was hybridized with a two-layer GCN, and yielded our BDR-CNN-GCN model which was then utilized for analysis of breast mammograms as a 14-way data augmentation method. Results As proof of concept, we ran our BDR-CNN-GCN algorithm 10 times on the breast mini-MIAS dataset (containing 322 mammographic images), achieving a sensitivity of 96.20±2.90%, a specificity of 96.00±2.31% and an accuracy of 96.10±1.60%. Conclusion Our BDR-CNN-GCN showed improved performance compared to five proposed neural network models and 15 state-of-the-art breast cancer detection approaches, proving to be an effective method for data augmentation and improved detection of malignant breast masses.

189 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year, to survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks.

8,730 citations

Journal ArticleDOI
TL;DR: The 11th edition of Harrison's Principles of Internal Medicine welcomes Anthony Fauci to its editorial staff, in addition to more than 85 new contributors.
Abstract: The 11th edition of Harrison's Principles of Internal Medicine welcomes Anthony Fauci to its editorial staff, in addition to more than 85 new contributors. While the organization of the book is similar to previous editions, major emphasis has been placed on disorders that affect multiple organ systems. Important advances in genetics, immunology, and oncology are emphasized. Many chapters of the book have been rewritten and describe major advances in internal medicine. Subjects that received only a paragraph or two of attention in previous editions are now covered in entire chapters. Among the chapters that have been extensively revised are the chapters on infections in the compromised host, on skin rashes in infections, on many of the viral infections, including cytomegalovirus and Epstein-Barr virus, on sexually transmitted diseases, on diabetes mellitus, on disorders of bone and mineral metabolism, and on lymphadenopathy and splenomegaly. The major revisions in these chapters and many

6,968 citations

01 Jan 1990
TL;DR: An overview of the self-organizing map algorithm, on which the papers in this issue are based, is presented in this article, where the authors present an overview of their work.
Abstract: An overview of the self-organizing map algorithm, on which the papers in this issue are based, is presented in this article.

2,933 citations