scispace - formally typeset
Search or ask a question
Author

Juan Ospina

Bio: Juan Ospina is an academic researcher from Florida A&M University – Florida State University College of Engineering. The author has contributed to research in topics: Electric power system & Distributed generation. The author has an hindex of 8, co-authored 24 publications receiving 184 citations. Previous affiliations of Juan Ospina include Los Alamos National Laboratory & Florida State University.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors provide a comprehensive overview of the cyber-physical energy systems (CPS) security landscape with an emphasis on CPES, and demonstrate a threat modeling methodology to accurately represent the CPS elements, their interdependencies, as well as the possible attack entry points and system vulnerabilities.
Abstract: Cyber-physical systems (CPS) are interconnected architectures that employ analog and digital components as well as communication and computational resources for their operation and interaction with the physical environment. CPS constitute the backbone of enterprise (e.g., smart cities), industrial (e.g., smart manufacturing), and critical infrastructure (e.g., energy systems). Thus, their vital importance, interoperability, and plurality of computing devices make them prominent targets for malicious attacks aiming to disrupt their operations. Attacks targeting cyber-physical energy systems (CPES), given their mission-critical nature within the power grid infrastructure, can lead to disastrous consequences. The security of CPES can be enhanced by leveraging testbed capabilities in order to replicate and understand power systems operating conditions, discover vulnerabilities, develop security countermeasures, and evaluate grid operation under fault-induced or maliciously constructed scenarios. Adequately modeling and reproducing the behavior of CPS could be a challenging task. In this paper, we provide a comprehensive overview of the CPS security landscape with an emphasis on CPES. Specifically, we demonstrate a threat modeling methodology to accurately represent the CPS elements, their interdependencies, as well as the possible attack entry points and system vulnerabilities. Leveraging the threat model formulation, we present a CPS framework designed to delineate the hardware, software, and modeling resources required to simulate the CPS and construct high-fidelity models that can be used to evaluate the system’s performance under adverse scenarios. The system performance is assessed using scenario-specific metrics, while risk assessment enables the system vulnerability prioritization factoring the impact on the system operation. The overarching framework for modeling, simulating, assessing, and mitigating attacks in a CPS is illustrated using four representative attack scenarios targeting CPES. The key objective of this paper is to demonstrate a step-by-step process that can be used to enact in-depth cybersecurity analyses, thus leading to more resilient and secure CPS.

105 citations

Journal ArticleDOI
Juan Ospina1, Alvi Newaz1, M. Omar Faruque1
TL;DR: A novel forecasting model designed to accurately forecast the PV power output for both large-scale and small-scale PV systems is proposed and improved the forecasting accuracy significantly in the metrics used to compare with other models while reducing the number of features needed to perform the forecasting operation.
Abstract: This paper proposes a novel forecasting model designed to accurately forecast the PV power output for both large-scale and small-scale PV systems. The proposed model uses available temperature data, approximate and detailed coefficients obtained from the decomposed PV power time series using the stationary wavelet transform (SWT), and statistical features extracted from the historical PV data. The model is comprised of four long-short-term memory (LSTM) recurrent neural networks (RNN) designed to perform multi-step forecasting on the individual approximate and detailed coefficients decomposed by the SWT and a final deep neural network (DNN) designed to perform the next time step PV power forecast. The DNN makes use of the reconstructed values estimated by the four LSTM networks together with temperature data and statistical features to predict the final forecasted value of the next time step PV power. 30-min resolution data from a 12.6 MW PV system located in the state of Florida are used for testing and evaluating the proposed method against several models found in the literature. The results obtained suggest that the proposed model improved the forecasting accuracy significantly in the metrics used to compare with other models while reducing the number of features needed to perform the forecasting operation.

69 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a cybersecurity assessment approach designed to assess the cyberphysical security of electric power systems (EPS), taking into consideration the intermittent generation of RES, vulnerabilities introduced by microprocessor-based electronic information and operational technology (IT/OT) devices, and contingency analysis results.
Abstract: The integration of renewable energy sources (RES) is rapidly increasing in electric power systems (EPS). While the inclusion of intermittent RES coupled with the wide-scale deployment of communication and sensing devices is important towards a fully smart grid, it has also expanded the cyber-threat landscape, effectively making power systems vulnerable to cyberattacks. This article proposes a cybersecurity assessment approach designed to assess the cyberphysical security of EPS. The work takes into consideration the intermittent generation of RES, vulnerabilities introduced by microprocessor-based electronic information and operational technology (IT/OT) devices, and contingency analysis results. The proposed approach utilizes deep reinforcement learning (DRL) and an adapted Common Vulnerability Scoring System (CVSS) score tailored to assess vulnerabilities in EPS in order to identify the optimal attack transition policy based on $N-2$ contingency results, i.e., the simultaneous failure of two system elements. The effectiveness of the work is validated via numerical and real-time simulation experiments performed on literature-based power grid test cases. The results demonstrate how the proposed method based on deep $Q$ -network ( $\text{D}Q\text{N}$ ) performs closely to a graph-search approach in terms of the number of transitions needed to find the optimal attack policy, without the need for full observation of the system. In addition, the experiments present the method’s scalability by showcasing the number of transitions needed to find the optimal attack transition policy in a large system such as the Polish 2383 bus test system. The results exhibit how the proposed approach requires one order of magnitude fewer transitions when compared to a random transition policy.

37 citations

Journal ArticleDOI
TL;DR: The topics presented in this paper include novel power-distribution architectures, protection techniques considering large renewable integration in smart grids, wireless charging in electric vehicles, simultaneous power and information transmission, multi-hop network-based coordination, power technologies for renewable energy and smart transformer, CPS reliability, transactive smart railway grid, and real-time simulation of shipboard power systems.
Abstract: In this article, a broad overview of the current research trends in power-electronic innovations in cyber–physical systems (CPSs) is presented. The recent advances in semiconductor device technologies, control architectures, and communication methodologies have enabled researchers to develop integrated smart CPSs that can cater to the emerging requirements of smart grids, renewable energy, electric vehicles, trains, ships, the Internet of Things (IoT), and so on. The topics presented in this article include novel power-distribution architectures, protection techniques considering large renewable integration in smart grids, wireless charging in electric vehicles, simultaneous power and information transmission, multihop network-based coordination, power technologies for renewable energy and smart transformer, CPS reliability, transactive smart railway grid, and real-time simulation of shipboard power systems. It is anticipated that the research trends presented in this article will provide a timely and useful overview to the power-electronics researchers with broad applications in CPSs.

37 citations

Journal ArticleDOI
19 Aug 2019
TL;DR: The proposed model uses sampling-based model predictive control (SBMPC), together with the real-time price of energy and forecasts of PV and load power, to allocate the dispatch of the available distributed energy resources (DERs) while minimizing the overall cost.
Abstract: This paper proposes a novel control solution designed to solve the local and grid-connected distributed energy resources (DERs) management problem by developing a generalizable framework capable of controlling DERs based on forecasted values and real-time energy prices. The proposed model uses sampling-based model predictive control (SBMPC), together with the real-time price of energy and forecasts of PV and load power, to allocate the dispatch of the available distributed energy resources (DERs) while minimizing the overall cost. The strategy developed aims to find the ideal combination of solar, grid, and energy storage (ES) power with the objective of minimizing the total cost of energy of the entire system. Both offline and controller hardware-in-the-loop (CHIL) results are presented for a 7-day test case scenario and compared with two manual base test cases and four baseline optimization algorithms (Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Quadratic Programming interior-point method (QP-IP), and Sequential Quadratic Programming (SQP)) designed to solve the optimization problem considering the current status of the system and also its future states. The proposed model uses a 24-hour prediction horizon with a 15-minute control horizon. The results demonstrate substantial cost and execution time savings when compared to the other baseline control algorithms.

31 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This article presents a survey of DRL approaches developed for cyber security, including DRL-based security methods for cyber-physical systems, autonomous intrusion detection techniques, and multiagent D RL-based game theory simulations for defense strategies against cyberattacks.
Abstract: The scale of Internet-connected systems has increased considerably, and these systems are being exposed to cyberattacks more than ever. The complexity and dynamics of cyberattacks require protecting mechanisms to be responsive, adaptive, and scalable. Machine learning, or more specifically deep reinforcement learning (DRL), methods have been proposed widely to address these issues. By incorporating deep learning into traditional RL, DRL is highly capable of solving complex, dynamic, and especially high-dimensional cyber defense problems. This article presents a survey of DRL approaches developed for cyber security. We touch on different vital aspects, including DRL-based security methods for cyber-physical systems, autonomous intrusion detection techniques, and multiagent DRL-based game theory simulations for defense strategies against cyberattacks. Extensive discussions and future research directions on DRL-based cyber security are also given. We expect that this comprehensive review provides the foundations for and facilitates future studies on exploring the potential of emerging DRL to cope with increasingly complex cyber security problems.

155 citations

Journal ArticleDOI
TL;DR: This paper aims at providing a complete and critical review on the recent applications of AI techniques, particularly on machine learning (ML), deep learning (DL), and hybrid methods, as these branches of AI are becoming increasingly attractive.
Abstract: Forecasting is a crucial task for successfully integrating photovoltaic (PV) output power into the grid. The design of accurate photovoltaic output forecasters remains a challenging issue, particularly for multistep-ahead prediction. Accurate PV output power forecasting is critical in a number of applications, such as micro-grids (MGs), energy optimization and management, PV integrated in smart buildings, and electrical vehicle chartering. Over the last decade, a vast literature has been produced on this topic, investigating numerical and probabilistic methods, physical models, and artificial intelligence (AI) techniques. This paper aims at providing a complete and critical review on the recent applications of AI techniques; we will focus particularly on machine learning (ML), deep learning (DL), and hybrid methods, as these branches of AI are becoming increasingly attractive. Special attention will be paid to the recent development of the application of DL, as well as to the future trends in this topic.

133 citations

Journal ArticleDOI
TL;DR: The proposed synthetic weather forecast is proved to embed the statistical features of the historical weather data, which results in a significant improvement in the forecasting accuracy and promotes a more efficient utilization of the publicly available type of sky forecast to achieve a more reliable PV generation prediction.
Abstract: In this paper, a forecasting algorithm is proposed to predict photovoltaic (PV) power generation using a long short term memory (LSTM) neural network (NN). A synthetic weather forecast is created for the targeted PV plant location by integrating the statistical knowledge of historical solar irradiance data with the publicly available type of sky forecast of the host city. To achieve this, a ${K}$ -means algorithm is used to classify the historical irradiance data into dynamic type of sky groups that vary from hour to hour in the same season. In other words, the types of sky are defined for each hour uniquely using different levels of irradiance based on the hour of the day and the season. This can mitigate the performance limitations of using fixed type of sky categories by translating them into dynamic and numerical irradiance forecast using historical irradiance data. The proposed synthetic weather forecast is proved to embed the statistical features of the historical weather data, which results in a significant improvement in the forecasting accuracy. The performance of the proposed model is investigated using different intraday horizon lengths in different seasons. It is shown that using the synthetic irradiance forecast can achieve up to 33% improvement in accuracy in comparison to that when an hourly categorical type of sky forecast is used, and up to 44.6% in comparison to that when a daily type of sky forecast is used. This highlights the significance of utilizing the proposed synthetic forecast, and promote a more efficient utilization of the publicly available type of sky forecast to achieve a more reliable PV generation prediction. Moreover, the superiority of the LSTM NN with the proposed features is verified by investigating other machine learning engines, namely the recurrent neural network (RNN), the generalized regression neural network (GRNN) and the extreme learning machine (ELM).

129 citations

Journal ArticleDOI
TL;DR: In this study, a hybrid deep learning model is proposed combining an ensemble long short term memory (LSTM) neural network with the stationary wavelet transform (SWT) technique, which alleviates the volatility and increases the data dimensions, which potentially help improve the LSTM forecasting accuracy.
Abstract: Irregular human behaviors and univariate datasets remain as two main obstacles of data-driven energy consumption predictions for individual households. In this study, a hybrid deep learning model is proposed combining an ensemble long short term memory (LSTM) neural network with the stationary wavelet transform (SWT) technique. The SWT alleviates the volatility and increases the data dimensions, which potentially help improve the LSTM forecasting accuracy. Moreover, the ensemble LSTM neural network further enhances the forecasting performance of the proposed method. Verification experiments were performed based on a real-world household energy consumption dataset collected by the ‘UK-DALE project. The results show that, with a competitive training efficiency, the proposed method outperforms all compared state-of-art methods, including the persistent method, support vector regression (SVR), long short term memory (LSTM) neural network and convolutional neural network combining long short term memory (CNN-LSTM), with different step sizes at 5, 10, 20 and 30 minutes, using three error metrics.

119 citations

Journal ArticleDOI
01 Jun 2021
TL;DR: A broad taxonomy of the research is devised using the key insights gained from this extensive review of deep learning-based solar and wind energy forecasting research published during the last five years, the taxonomy is believed to be vital in understanding the cutting-edge and accelerating innovation in this field.
Abstract: Renewable energy is essential for planet sustainability. Renewable energy output forecasting has a significant impact on making decisions related to operating and managing power systems. Accurate prediction of renewable energy output is vital to ensure grid reliability and permanency and reduce the risk and cost of the energy market and systems. Deep learning's recent success in many applications has attracted researchers to this field and its promising potential is manifested in the richness of the proposed methods and the increasing number of publications. To facilitate further research and development in this area, this paper provides a review of deep learning-based solar and wind energy forecasting research published during the last five years discussing extensively the data and datasets used in the reviewed works, the data pre-processing methods, deterministic and probabilistic methods, and evaluation and comparison methods. The core characteristics of all the reviewed works are summarised in tabular forms to enable methodological comparisons. The current challenges in the field and future research directions are given. The trends show that hybrid forecasting models are the most used in this field followed by Recurrent Neural Network models including Long Short-Term Memory and Gated Recurrent Unit, and in the third place Convolutional Neural Networks. We also find that probabilistic and multistep ahead forecasting methods are gaining more attention. Moreover, we devise a broad taxonomy of the research using the key insights gained from this extensive review, the taxonomy we believe will be vital in understanding the cutting-edge and accelerating innovation in this field.

112 citations