scispace - formally typeset
Search or ask a question
Author

Juan Pablo Duarte

Other affiliations: KAIST
Bio: Juan Pablo Duarte is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: BSIM & MOSFET. The author has an hindex of 23, co-authored 55 publications receiving 1965 citations. Previous affiliations of Juan Pablo Duarte include KAIST.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
Sung-Jin Choi1, Dong-Il Moon1, Sungho Kim1, Juan Pablo Duarte1, Yang-Kyu Choi1 
TL;DR: In this article, the sensitivity of threshold voltage (T) to the variation of silicon nanowire (SiNW) width (Wsi) in gate-all-around junctionless transistors by comparison with inversion-mode transistors with the same geometric parameters was investigated.
Abstract: We experimentally investigate the sensitivity of threshold voltage (T) to the variation of silicon nanowire (SiNW) width (Wsi) in gate-all-around junctionless transistors by comparison with inversion-mode transistors with the same geometric parameters. Due to the nature of junctionless transistors with a heavily doped SiNW channel, the VT fluctuation caused by the Wsi variation of junctionless transistors is significantly larger than that of inversion-mode transistors with a nearly intrinsic channel. This is because, in junctionless transistors, the channel doping concentration cannot be reduced in order to keep their inherent advantages. Therefore, our findings indicate that careful optimization or methods to mitigate the VT fluctuation related to the Wsi variation should be considered in junctionless transistors.

287 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report subthreshold swings as low as 8.5 mV/decade over as high as eight orders of magnitude of drain current in short-channel negative capacitance FinFETs with gate length $L_{g}=100$ nm.
Abstract: We report subthreshold swings as low as 8.5 mV/decade over as high as eight orders of magnitude of drain current in short-channel negative capacitance FinFETs (NC-FinFETs) with gate length $L_{g}=100$ nm. NC-FinFETs are constructed by connecting a high-quality epitaxial bismuth ferrite (BiFeO3) ferroelectric capacitor to the gate terminal of both n-type and p-type FinFETs. We show that a self-consistent simulation scheme based on Berkeley SPICE Insulated-Gate-FET Model:Common Multi Gate model and Landau–Devonshire formalism could quantitatively match the experimental NC-FinFET transfer characteristics. This also allows a general procedure to extract the effective $S$ -shaped ferroelectric charge–voltage characteristics that provides important insights into the device operation.

206 citations

Journal ArticleDOI
TL;DR: In this article, a bulk current model for long-channel double-gate junctionless (DGJL) transistors was formulated using a depletion approximation, and an analytical expression was derived from the Poisson equation to find channel potential.
Abstract: A bulk current model is formulated for long-channel double-gate junctionless (DGJL) transistors. Using a depletion approximation, an analytical expression is derived from the Poisson equation to find channel potential, which expresses the dependence of depletion width under an applied gate voltage. The depletion width equation is further simplified by the unique characteristic of junctionless transistors, i.e., a high channel doping concentration. From the depletion width formula, the bulk current model is constructed using Ohm's law. In addition, an analytical expression for subthreshold current is derived. The proposed model is compared with simulation data, revealing good agreement. The simplicity of the model gives a fast and easy way to understand, analyze, and design DGJL transistors comprehensively.

169 citations

Journal ArticleDOI
TL;DR: In this article, a drain current model for long-channel double-gate junctionless transistors was derived by extending the concept of parabolic potential approximation for the subthreshold and the linear regions.
Abstract: A drain current model available for full-range operation is derived for long-channel double-gate junctionless transistors. Including dopant and mobile carrier charges, a continuous 1-D charge model is derived by extending the concept of parabolic potential approximation for the subthreshold and the linear regions. Based on the continuous charge model, the Pao-Sah integral is analytically carried out to obtain a continuous drain current model. The proposed model is appropriate for compact modeling, because it continuously captures the phenomenon of the bulk conduction mechanism in all regions of device operation, including the subthreshold, linear, and saturation regions. It is shown that the model is in complete agreement with the numerical simulations for crucial device parameters and all operational voltage ranges.

143 citations

Journal ArticleDOI
TL;DR: In this paper, a silicon nanowire with a gate-all-around (GAA) structure is implemented on a bulk wafer for a junctionless (JL) field effect transistor (FET).
Abstract: A silicon nanowire (Si-NW) with a gate-all-around (GAA) structure is implemented on a bulk wafer for a junctionless (JL) field-effect transistor (FET). A suspended Si-NW from the bulk-Si is realized using a deep reactive ion etching (RIE) process. The RIE process is iteratively applied to make multiply stacked Si-NWs, which can increase the on-state current when amplified with the number of iterations or enable integration of 3-D stacked Flash memory. The fabricated JL FETs exhibit excellent electrostatic control with the aid of the GAA and junction-free structure. The influence on device characteristics according to the channel dimensions and additional doping at the source and drain extension are studied for various geometric structures of the Si-NW.

111 citations


Cited by
More filters
Book
01 Jan 1985
TL;DR: All information and recommendations in this technical manual have been supplied to the best of their knowledge, as accurately as possible and updated to reflect the most recent technological developments.
Abstract: All information and recommendations in this technical manual have been supplied to the best of our knowledge, as accurately as possible and updated to reflect the most recent technological developments. We cannot accept any responsibility for recommendations based solely on this document.

346 citations

Journal ArticleDOI
TL;DR: A high density, low-power standard cell architecture, developed using design/technology co-optimization (DTCO), as well as example SRAM cells are shown, and the PDK transistor electrical assumptions are explained, as are the FEOL and BEOL design rules.

326 citations

Journal ArticleDOI
TL;DR: Remarkable sub-60 mV/dec switching was obtained from 2D NC-FETs of various sizes and gate stack thicknesses, demonstrating great potential for enabling size- and voltage-scalable transistors.
Abstract: It has been shown that a ferroelectric material integrated into the gate stack of a transistor can create an effective negative capacitance (NC) that allows the device to overcome “Boltzmann tyranny”. While this switching below the thermal limit has been observed with Si-based NC field-effect transistors (NC-FETs), the adaptation to 2D materials would enable a device that is scalable in operating voltage as well as size. In this work, we demonstrate sustained sub-60 mV/dec switching, with a minimum subthreshold swing (SS) of 6.07 mV/dec (average of 8.03 mV/dec over 4 orders of magnitude in drain current), by incorporating hafnium zirconium oxide (HfZrO2 or HZO) ferroelectric into the gate stack of a MoS2 2D-FET. By first fabricating and characterizing metal–ferroelectric–metal capacitors, the MoS2 is able to be transferred directly on top and characterized with both a standard and a negative capacitance gate stack. The 2D NC-FET exhibited marked enhancement in low-voltage switching behavior compared to th...

226 citations

Journal ArticleDOI
27 Jul 2018-Science
TL;DR: It is shown that a graphene Dirac source (DS) with a much narrower electron density distribution around the Fermi level than that of conventional FETs can lower subthreshold swing and supply voltage in field-effect transistors.
Abstract: An efficient way to reduce the power consumption of electronic devices is to lower the supply voltage, but this voltage is restricted by the thermionic limit of subthreshold swing (SS), 60 millivolts per decade, in field-effect transistors (FETs). We show that a graphene Dirac source (DS) with a much narrower electron density distribution around the Fermi level than that of conventional FETs can lower SS. A DS-FET with a carbon nanotube channel provided an average SS of 40 millivolts per decade over four decades of current at room temperature and high device current I60 of up to 40 microamperes per micrometer at 60 millivolts per decade. When compared with state-of-the-art silicon 14-nanometer node FETs, a similar on-state current Ion is realized but at a much lower supply voltage of 0.5 volts (versus 0.7 volts for silicon) and a much steeper SS below 35 millivolts per decade in the off-state.

211 citations

Journal ArticleDOI
TL;DR: In this article, the performance of high-κ /metal gate nanowire (NW) transistors without junctions is reported, with a channel thickness of 9 nm and sub-15-nm gate length and width.
Abstract: In this letter, we report the performance of high-κ /metal gate nanowire (NW) transistors without junctions fabricated with a channel thickness of 9 nm and sub-15-nm gate length and NW width. Near-ideal subthreshold slope (SS) and extremely low leakage currents are demonstrated for ultrascaled gate lengths with a high on-off ratio (Ion/Ioff) >; 106. For the first time, an SS lower than 70 mV/dec is achieved at LG = 13 nm for n-type and p-type transistors, highlighting excellent electrostatic integrity of trigate junctionless NW MOSFETs.

211 citations