scispace - formally typeset
Search or ask a question
Author

Juan R. González

Bio: Juan R. González is an academic researcher from Pompeu Fabra University. The author has contributed to research in topics: Population & Genome-wide association study. The author has an hindex of 58, co-authored 241 publications receiving 17742 citations. Previous affiliations of Juan R. González include University of Barcelona & Carlos III Health Institute.


Papers
More filters
Journal ArticleDOI
23 Nov 2006-Nature
TL;DR: A first-generation CNV map of the human genome is constructed through the study of 270 individuals from four populations with ancestry in Europe, Africa or Asia, underscoring the importance of CNV in genetic diversity and evolution and the utility of this resource for genetic disease studies.
Abstract: Copy number variation (CNV) of DNA sequences is functionally significant but has yet to be fully ascertained. We have constructed a first-generation CNV map of the human genome through the study of 270 individuals from four populations with ancestry in Europe, Africa or Asia (the HapMap collection). DNA from these individuals was screened for CNV using two complementary technologies: single-nucleotide polymorphism (SNP) genotyping arrays, and clone-based comparative genomic hybridization. A total of 1,447 copy number variable regions (CNVRs), which can encompass overlapping or adjacent gains or losses, covering 360 megabases (12% of the genome) were identified in these populations. These CNVRs contained hundreds of genes, disease loci, functional elements and segmental duplications. Notably, the CNVRs encompassed more nucleotide content per genome than SNPs, underscoring the importance of CNV in genetic diversity and evolution. The data obtained delineate linkage disequilibrium patterns for many CNVs, and reveal marked variation in copy number among populations. We also demonstrate the utility of this resource for genetic disease studies.

4,275 citations

Journal ArticleDOI
TL;DR: In this paper, the authors conducted genome-wide association studies of three phenotypes: subjective well-being (n = 298,420), depressive symptoms (n= 161,460), and neuroticism(n = 170,911).
Abstract: Very few genetic variants have been associated with depression and neuroticism, likely because of limitations on sample size in previous studies. Subjective well-being, a phenotype that is genetically correlated with both of these traits, has not yet been studied with genome-wide data. We conducted genome-wide association studies of three phenotypes: subjective well-being (n = 298,420), depressive symptoms (n = 161,460), and neuroticism (n = 170,911). We identify 3 variants associated with subjective well-being, 2 variants associated with depressive symptoms, and 11 variants associated with neuroticism, including 2 inversion polymorphisms. The two loci associated with depressive symptoms replicate in an independent depression sample. Joint analyses that exploit the high genetic correlations between the phenotypes (|ρ^| ≈ 0.8) strengthen the overall credibility of the findings and allow us to identify additional variants. Across our phenotypes, loci regulating expression in central nervous system and adrenal or pancreas tissues are strongly enriched for association.

796 citations

Journal ArticleDOI
TL;DR: SNPassoc, an R package to carry out most common analyses in whole genome association studies, including descriptive statistics and exploratory analysis of missing values, calculation of Hardy-Weinberg equilibrium, analysis of association based on generalized linear models, and analysis of multiple SNPs.
Abstract: Summary: The popularization of large-scale genotyping projects has led to the widespread adoption of genetic association studies as the tool of choice in the search for single nucleotide polymorphisms (SNPs) underlying susceptibility to complex diseases. Although the analysis of individual SNPs is a relatively trivial task, when the number is large and multiple genetic models need to be explored it becomes necessary a tool to automate the analyses. In order to address this issue, we developed SNPassoc, an R package to carry out most common analyses in whole genome association studies. These analyses include descriptive statistics and exploratory analysis of missing values, calculation of Hardy--Weinberg equilibrium, analysis of association based on generalized linear models (either for quantitative or binary traits), and analysis of multiple SNPs (haplotype and epistasis analysis). Availability: Package SNPassoc is available at CRAN from http://cran.r-project.org Contact:juanramon.gonzalez@crg.es or v.moreno@iconcologia.net Supplementary information: A tutorial is available on Bioinformatics online and in http://davinci.crg.es/estivill_lab/snpassoc

697 citations

Journal ArticleDOI
Bonnie R. Joubert1, Janine F. Felix2, Paul Yousefi3, Kelly M. Bakulski4, Allan C. Just5, Carrie V. Breton6, Sarah E. Reese1, Christina A. Markunas7, Christina A. Markunas1, Rebecca C Richmond8, Cheng-Jian Xu9, Leanne K. Küpers9, Sam S. Oh10, Cathrine Hoyo11, Olena Gruzieva12, Cilla Söderhäll12, Lucas A. Salas13, Nour Baïz14, Hongmei Zhang15, Johanna Lepeule16, Carlos Ruiz13, Symen Ligthart2, Tianyuan Wang1, Jack A. Taylor1, Liesbeth Duijts, Gemma C Sharp8, Soesma A Jankipersadsing9, Roy Miodini Nilsen17, Ahmad Vaez9, Ahmad Vaez18, M. Daniele Fallin4, Donglei Hu10, Augusto A. Litonjua19, Bernard F. Fuemmeler7, Karen Huen3, Juha Kere12, Inger Kull12, Monica Cheng Munthe-Kaas20, Ulrike Gehring21, Mariona Bustamante, Marie José Saurel-Coubizolles22, Bilal M. Quraishi15, Jie Ren6, Jörg Tost, Juan R. González13, Marjolein J. Peters2, Siri E. Håberg23, Zongli Xu1, Joyce B. J. van Meurs2, Tom R. Gaunt8, Marjan Kerkhof9, Eva Corpeleijn9, Andrew P. Feinberg24, Celeste Eng10, Andrea A. Baccarelli25, Sara E. Benjamin Neelon4, Asa Bradman3, Simon Kebede Merid12, Anna Bergström12, Zdenko Herceg26, Hector Hernandez-Vargas26, Bert Brunekreef21, Mariona Pinart, Barbara Heude27, Susan Ewart28, Jin Yao6, Nathanaël Lemonnier29, Oscar H. Franco2, Michael C. Wu30, Albert Hofman2, Albert Hofman25, Wendy L. McArdle8, Pieter van der Vlies9, Fahimeh Falahi9, Matthew W. Gillman25, Lisa F. Barcellos3, Ashok Kumar12, Ashok Kumar31, Ashok Kumar32, Magnus Wickman33, Magnus Wickman12, Stefano Guerra, Marie-Aline Charles27, John W. Holloway34, Charles Auffray29, Henning Tiemeier2, George Davey Smith8, Dirkje S. Postma9, Marie-France Hivert25, Brenda Eskenazi3, Martine Vrijheid13, Hasan Arshad34, Josep M. Antó, Abbas Dehghan2, Wilfried Karmaus15, Isabella Annesi-Maesano14, Jordi Sunyer, Akram Ghantous26, Göran Pershagen12, Nina Holland3, Susan K. Murphy7, Dawn L. DeMeo19, Esteban G. Burchard10, Christine Ladd-Acosta4, Harold Snieder9, Wenche Nystad23, Gerard H. Koppelman9, Caroline L Relton8, Vincent W. V. Jaddoe2, Allen J. Wilcox1, Erik Melén12, Erik Melén33, Stephanie J. London1 
TL;DR: This large scale meta-analysis of methylation data identified numerous loci involved in response to maternal smoking in pregnancy with persistence into later childhood and provide insights into mechanisms underlying effects of this important exposure.
Abstract: Epigenetic modifications, including DNA methylation, represent a potential mechanism for environmental impacts on human disease. Maternal smoking in pregnancy remains an important public health problem that impacts child health in a myriad of ways and has potential lifelong consequences. The mechanisms are largely unknown, but epigenetics most likely plays a role. We formed the Pregnancy And Childhood Epigenetics (PACE) consortium and meta-analyzed, across 13 cohorts (n = 6,685), the association between maternal smoking in pregnancy and newborn blood DNA methylation at over 450,000 CpG sites (CpGs) by using the Illumina 450K BeadChip. Over 6,000 CpGs were differentially methylated in relation to maternal smoking at genome-wide statistical significance (false discovery rate, 5%), including 2,965 CpGs corresponding to 2,017 genes not previously related to smoking and methylation in either newborns or adults. Several genes are relevant to diseases that can be caused by maternal smoking (e.g., orofacial clefts and asthma) or adult smoking (e.g., certain cancers). A number of differentially methylated CpGs were associated with gene expression. We observed enrichment in pathways and processes critical to development. In older children (5 cohorts, n = 3,187), 100% of CpGs gave at least nominal levels of significance, far more than expected by chance (p value < 2.2 × 10(-16)). Results were robust to different normalization methods used across studies and cell type adjustment. In this large scale meta-analysis of methylation data, we identified numerous loci involved in response to maternal smoking in pregnancy with persistence into later childhood and provide insights into mechanisms underlying effects of this important exposure.

646 citations

Journal ArticleDOI
Kevin B. Jacobs1, Kevin B. Jacobs2, Meredith Yeager2, Meredith Yeager1  +205 moreInstitutions (52)
TL;DR: In an analysis of 31,717 cancer cases and 26,136 cancer-free controls from 13 genome-wide association studies, this paper observed large chromosomal abnormalities in a subset of clones in DNA obtained from blood or buccal samples.
Abstract: In an analysis of 31,717 cancer cases and 26,136 cancer-free controls from 13 genome-wide association studies, we observed large chromosomal abnormalities in a subset of clones in DNA obtained from blood or buccal samples. We observed mosaic abnormalities, either aneuploidy or copy-neutral loss of heterozygosity, of >2 Mb in size in autosomes of 517 individuals (0.89%), with abnormal cell proportions of between 7% and 95%. In cancer-free individuals, frequency increased with age, from 0.23% under 50 years to 1.91% between 75 and 79 years (P = 4.8 × 10(-8)). Mosaic abnormalities were more frequent in individuals with solid tumors (0.97% versus 0.74% in cancer-free individuals; odds ratio (OR) = 1.25; P = 0.016), with stronger association with cases who had DNA collected before diagnosis or treatment (OR = 1.45; P = 0.0005). Detectable mosaicism was also more common in individuals for whom DNA was collected at least 1 year before diagnosis with leukemia compared to cancer-free individuals (OR = 35.4; P = 3.8 × 10(-11)). These findings underscore the time-dependent nature of somatic events in the etiology of cancer and potentially other late-onset diseases.

496 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This work presents Model-based Analysis of ChIP-Seq data, MACS, which analyzes data generated by short read sequencers such as Solexa's Genome Analyzer, and uses a dynamic Poisson distribution to effectively capture local biases in the genome, allowing for more robust predictions.
Abstract: We present Model-based Analysis of ChIP-Seq data, MACS, which analyzes data generated by short read sequencers such as Solexa's Genome Analyzer. MACS empirically models the shift size of ChIP-Seq tags, and uses it to improve the spatial resolution of predicted binding sites. MACS also uses a dynamic Poisson distribution to effectively capture local biases in the genome, allowing for more robust predictions. MACS compares favorably to existing ChIP-Seq peak-finding algorithms, and is freely available.

13,008 citations

Journal ArticleDOI
06 Jun 2013-Cell
TL;DR: Nine tentative hallmarks that represent common denominators of aging in different organisms are enumerated, with special emphasis on mammalian aging, to identify pharmaceutical targets to improve human health during aging, with minimal side effects.

9,980 citations

Journal ArticleDOI
TL;DR: This work presents a meta-analyses of the immune system’s response to chronic obstructive pulmonary disease and shows clear patterns of decline in the immune systems of elderly patients with compromised immune systems.
Abstract: Lionel A. Mandell, Richard G. Wunderink, Antonio Anzueto, John G. Bartlett, G. Douglas Campbell, Nathan C. Dean, Scott F. Dowell, Thomas M. File, Jr. Daniel M. Musher, Michael S. Niederman, Antonio Torres, and Cynthia G. Whitney McMaster University Medical School, Hamilton, Ontario, Canada; Northwestern University Feinberg School of Medicine, Chicago, Illinois; University of Texas Health Science Center and South Texas Veterans Health Care System, San Antonio, and Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, Texas; Johns Hopkins University School of Medicine, Baltimore, Maryland; Division of Pulmonary, Critical Care, and Sleep Medicine, University of Mississippi School of Medicine, Jackson; Division of Pulmonary and Critical Care Medicine, LDS Hospital, and University of Utah, Salt Lake City, Utah; Centers for Disease Control and Prevention, Atlanta, Georgia; Northeastern Ohio Universities College of Medicine, Rootstown, and Summa Health System, Akron, Ohio; State University of New York at Stony Brook, Stony Brook, and Department of Medicine, Winthrop University Hospital, Mineola, New York; and Cap de Servei de Pneumologia i Allergia Respiratoria, Institut Clinic del Torax, Hospital Clinic de Barcelona, Facultat de Medicina, Universitat de Barcelona, Institut d’Investigacions Biomediques August Pi i Sunyer, CIBER CB06/06/0028, Barcelona, Spain.

5,558 citations

01 Jan 2016
TL;DR: The modern applied statistics with s is universally compatible with any devices to read, and is available in the digital library an online access to it is set as public so you can download it instantly.
Abstract: Thank you very much for downloading modern applied statistics with s. As you may know, people have search hundreds times for their favorite readings like this modern applied statistics with s, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. modern applied statistics with s is available in our digital library an online access to it is set as public so you can download it instantly. Our digital library saves in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Kindly say, the modern applied statistics with s is universally compatible with any devices to read.

5,249 citations

Journal ArticleDOI
18 Oct 2007-Nature
TL;DR: The Phase II HapMap is described, which characterizes over 3.1 million human single nucleotide polymorphisms genotyped in 270 individuals from four geographically diverse populations and includes 25–35% of common SNP variation in the populations surveyed, and increased differentiation at non-synonymous, compared to synonymous, SNPs is demonstrated.
Abstract: We describe the Phase II HapMap, which characterizes over 3.1 million human single nucleotide polymorphisms (SNPs) genotyped in 270 individuals from four geographically diverse populations and includes 25-35% of common SNP variation in the populations surveyed. The map is estimated to capture untyped common variation with an average maximum r2 of between 0.9 and 0.96 depending on population. We demonstrate that the current generation of commercial genome-wide genotyping products captures common Phase II SNPs with an average maximum r2 of up to 0.8 in African and up to 0.95 in non-African populations, and that potential gains in power in association studies can be obtained through imputation. These data also reveal novel aspects of the structure of linkage disequilibrium. We show that 10-30% of pairs of individuals within a population share at least one region of extended genetic identity arising from recent ancestry and that up to 1% of all common variants are untaggable, primarily because they lie within recombination hotspots. We show that recombination rates vary systematically around genes and between genes of different function. Finally, we demonstrate increased differentiation at non-synonymous, compared to synonymous, SNPs, resulting from systematic differences in the strength or efficacy of natural selection between populations.

4,565 citations