scispace - formally typeset
Search or ask a question
Author

Juan Wang

Bio: Juan Wang is an academic researcher from Fifth Affiliated Hospital of Xinjiang Medical University. The author has contributed to research in topics: Gene knockdown & Pressure overload. The author has an hindex of 3, co-authored 4 publications receiving 45 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is suggested that Andr alleviates adverse cardiac remodeling following myocardial infarction through enhancing Nrf2 signaling pathway.
Abstract: Adverse cardiac remodeling after myocardial infarction (MI) is associated with extremely high mortality rates worldwide. Although optimized medical therapy, Preservation of lusitropic and inotropic function and protection against adverse remodeling in ventricular structure remain relatively frequent. This study demonstrated that Andrographolide (Andr) significantly ameliorated adverse cardiac remodeling induced by myocardial infarction and improves contractile function in mice with LAD ligation compared with the control group. Briefly, Andr markedly attenuated cardiac fibrosis and relieved inflammation after myocardial infarction. Specifically, Andr significantly blocked oxidative stress and the nuclear translocation of p-P65 following myocardial infarction. At the mechanistic level, antioxidant effect of Andr was achieved through strengthening antioxidative stress capacity and attributed to the activation of Nrf2/HO-1 Signaling. Consistently, H9C2 administrated with Andr showed a decreased oxidative stress caused by hypoxia precondition, but treatment with specific Nrf2 inhibitor (ML385) or the silence of Nrf2 blunted the activation of Nrf2/HO-1 Signaling and removed the protective effects of Andr in vitro. Thus, we suggest that Andr alleviates adverse cardiac remodeling following myocardial infarction through enhancing Nrf2 signaling pathway.

44 citations

Journal ArticleDOI
Yuan Yuan1, Juan Wang, Qiuxiang Chen1, Qing-Qing Wu1, Wei Deng1, Heng Zhou1, Difei Shen1 
TL;DR: CYTOR might play a protective role in cardiac hypertrophy through miR-155 and downstream IKKi and NF-κB signaling, most possibly through serving as a ceRNA for mi R-155 to counteract miR -155-mediated repression of IKBKE.

33 citations

Journal ArticleDOI
TL;DR: The data indicated that zileuton protected mice from pressure overload-induced cardiac hypertrophy, fibrosis, and oxidative stress by activating PPARα/NRF2 signaling.
Abstract: Zileuton has been demonstrated to be an anti-inflammatory agent due to its well-known ability to inhibit 5-lipoxygenase (5-LOX). However, the effects of zileuton on cardiac remodeling are unclear. In this study, the effects of zileuton on pressure overload-induced cardiac remodeling were investigated and the possible mechanisms were examined. Aortic banding was performed on mice to induce a cardiac remodeling model, and the mice were then treated with zileuton 1 week after surgery. We also stimulated neonatal rat cardiomyocytes with phenylephrine (PE) and then treated them with zileuton. Our data indicated that zileuton protected mice from pressure overload-induced cardiac hypertrophy, fibrosis, and oxidative stress. Zileuton also attenuated PE-induced cardiomyocyte hypertrophy in a time- and dose-dependent manner. Mechanistically, we found that zileuton activated PPARα, but not PPARγ or PPARθ, thus inducing Keap and NRF2 activation. This was confirmed with the PPARα inhibitor GW7647 and NRF2 siRNA, which abolished the protective effects of zileuton on cardiomyocytes. Moreover, PPARα knockdown abolished the anticardiac remodeling effects of zileuton in vivo. Taken together, our data indicate that zileuton protects against pressure overload-induced cardiac remodeling by activating PPARα/NRF2 signaling.

13 citations

Journal ArticleDOI
Qing-Qing Wu1, Qiuxiang Chen1, Juan Wang, Di Fan1, Heng Zhou1, Yuan Yuan1, Difei Shen1 
TL;DR: In this article, the effect of miR-196b suppression upon the B-raf was shown to be opposite to Pvt1 knockdown, which suggests that miR196b suppressing might significantly attenuate the effects of Pvt 1 knockdown.

6 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Melatonin significantly reduced the level of ferroptosis and improved the osteogenic capacity of MC3T3-E1 through activating the Nrf2/HO-1 pathway in vivo and in vitro and confirmed that melatonin can inhibit the ferroPTosis of osteoblasts through activating NRF2/ HO-1 signaling pathway to improve bone microstructure.
Abstract: Ferroptosis is recently identified, an iron- and reactive oxygen species- (ROS-) dependent form of regulated cell death. This study was designed to determine the existence of ferroptosis in the pathogenesis of type 2 diabetic osteoporosis and confirm that melatonin can inhibit the ferroptosis of osteoblasts through activating Nrf2/HO-1 signaling pathway to improve bone microstructure in vivo and in vitro. We treated MC3T3-E1 cells with different concentrations of melatonin (1, 10, or 100 μM) and exposed them to high glucose (25.5 mM) for 48 h in vitro. Our data showed that high glucose can induce osteoblast cytotoxicity and the accumulation of lipid peroxide, the mitochondria of osteoblast show the same morphology changes as the erastin treatment group, and the expression of ferroptosis-related proteins glutathione peroxidase 4 (GPX4) and cystine-glutamate antiporter (SLC7A11) is downregulated, but these effects were reversed by ferroptosis inhibitor ferrastatin-1 and iron chelator deferoxamine (DFO). Furthermore, western blot and real-time polymerase chain reaction were used to detect the expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1); osteogenic capacity was evaluated by alizarin red S staining and the expression of osteoprotegerin, osteocalcin, and alkaline phosphatase; the results showed that the expression levels of these proteins in osteoblasts with 1, 10, or 100 μM melatonins were significantly higher than the high glucose group, but after using Nrf2-SiRNA interference, the therapeutic effect of melatonin was significantly inhibited. We also performed in vivo experiments in a diabetic rat model treated with two concentrations of melatonin (10, 50 mg/kg). Dynamic bone histomorphometry and micro-CT were used to observe the rat bone microstructure, and the expression of GPX4 and Nrf2 was determined by immunohistochemistry. Here, we first report that high glucose induces ferroptosis via increased ROS/lipid peroxidation/glutathione depletion in type 2 diabetic osteoporosis. More importantly, melatonin significantly reduced the level of ferroptosis and improved the osteogenic capacity of MC3T3-E1 through activating the Nrf2/HO-1 pathway in vivo and in vitro.

150 citations

Journal ArticleDOI
TL;DR: The discovery of lncRNAs have provided a new type of regulation for the NF-κB signaling and thus could be explored for therapeutic interventions as well as the challenges associated with the therapeutic interventions of this crosstalk are discussed.

74 citations

Journal ArticleDOI
TL;DR: A pivotal role of CYTOR is demonstrated in mediating tamoxifen resistance in breast cancer through regulation of miR-125a-5p, CYTOR elevated serum response factor (SRF) expression and activated Hippo and mitogen associated protein kinase signaling pathways to promote breast cancer cell survival upon tamoxIFen treatment.
Abstract: Development of resistance to endocrine therapy, such as tamoxifen, remains a tricky clinical problem during the treatment of breast cancer. Accumulating evidence suggested that dysregulation of long noncoding (lnc_RNAs contributes to the development of tamoxifen resistance. In the current study, via screening, cytoskeleton regulator RNA (CYTOR) was identified as the most significantly elevated lncRNA in the established tamoxifen resistant MCF7 cell lines (MCF7/TAM1 and MCF7/TAM2) compared with the parental MCF7 cells (MCF7‑P). The CCK‑8 assay indicated that silencing of CYTOR increased the sensitivity of MCF7/TAM1 and MCF7/TAM2 to tamoxifen treatment. Using bioinformatic analysis, it was predicted that microRNA (miR)‑125a‑5p might bind to CYTOR and the expression of miR‑125a‑5p was negatively correlated with CYTOR in the tumor tissues of breast cancer. In addition, RT‑qPCR and dual luciferase assays validated that CYTOR directly repressed miR‑125a‑5p expression in breast cancer cells. Through regulation of miR‑125a‑5p, CYTOR elevated serum response factor (SRF) expression and activated Hippo and mitogen associated protein kinase signaling pathways to promote breast cancer cell survival upon tamoxifen treatment. In the collected tumor tissues of breast cancer in the present study, high expression of CYTOR was detected in tissues from patients with no response to tamoxifen compared with those from patients who were not treated with tamoxifen. A positive correlation between CYTOR and SRF mRNA expression was observed in tissues collected from patients with breast cancer. In conclusion, the results of the present study demonstrated a pivotal role of CYTOR in mediating tamoxifen resistance in breast cancer.

53 citations

Journal ArticleDOI
TL;DR: Curcumin is able to enhance the level of anti-inflammatory cytokines and improve inflammatory disorders such as colitis by targeting STAT signaling pathway, and studies show that inhibition of JAK/STAT pathway by curcuming is involved in reduced migration and invasion of cancer cells.
Abstract: Curcumin is a naturally occurring nutraceutical compound with a number of therapeutic and biological activities such as antioxidant, anti-inflammatory, anti-diabetic, antitumor, and cardioprotective. This plant-derived chemical has demonstrated great potential in targeting various signaling pathways to exert its protective effects. Signal transducers and activator of transcription (STAT) is one of the molecular pathways involved in a variety of biological processes such as cell proliferation and cell apoptosis. Accumulating data demonstrates that the STAT pathway is an important target in treatment of a number of disorders, particularly cancer. Curcumin is capable of affecting STAT signaling pathway in induction of its therapeutic impacts. Curcumin is able to enhance the level of anti-inflammatory cytokines and improve inflammatory disorders such as colitis by targeting STAT signaling pathway. Furthermore, studies show that inhibition of JAK/STAT pathway by curcumin is involved in reduced migration and invasion of cancer cells. Curcumin normalizes the expression of JAK/STAT signaling pathway to exert anti-diabetic, renoprotective, and neuroprotective impacts. At the present review, we provide a comprehensive discussion about the effect of curcumin on JAK/STAT signaling pathway to direct further studies in this field.

52 citations

Journal ArticleDOI
TL;DR: Zinc treatment promoted motor function recovery on days 3, 5, 7, 14, 21 and 28 after SCI and reduces the mitochondrial void rate in spinal neuronal cells and promotes neuronal recovery, suggesting zinc has a protective effect on spinal cord injury by inhibiting oxidative damage and nlrp3 inflammation.

48 citations