scispace - formally typeset
Search or ask a question
Author

Juana M. Pasquini

Bio: Juana M. Pasquini is an academic researcher from University of Buenos Aires. The author has contributed to research in topics: Myelin & Oligodendrocyte. The author has an hindex of 30, co-authored 113 publications receiving 3619 citations. Previous affiliations of Juana M. Pasquini include National Scientific and Technical Research Council.


Papers
More filters
Journal ArticleDOI
01 Apr 2009-Glia
TL;DR: This review gives a comprehensive overview of the existing literature on role of iron in oligodendrocytes and the mechanisms of iron acquisition and intracellular handling to identify effective therapies for dysmyelinating disorders.
Abstract: Iron is an essential trophic factor that is required for oxygen consumption and ATP production. Thus it plays a key role in vital cell functions. Although the brain has a relatively high rate of oxygen consumption compared to other organs, oligodendrocytes are the principal cells in the CNS that stain for iron under normal conditions. The importance of iron in myelin production has been demonstrated by studies showing that decreased availability of iron in the diet is associated with hypomyelination. The timing of iron delivery to oligodendrocytes during development is also important because hypomyelination and the associated neurological sequelae persist long after the systemic iron deficiency has been corrected. Therefore, identifying the molecular roles of iron in oligodendrocyte development and myelin production, and the mechanisms and timing of iron acquisitions are important prerequisites to developing effective therapies for dysmyelinating disorders. It is the purpose of this review to give a comprehensive overview of the existing literature on role of iron in oligodendrocytes and the mechanisms of iron acquisition and intracellular handling.

480 citations

Journal ArticleDOI
TL;DR: Overall, the results of this study demonstrate how myelin composition can be affected by loss of iron homeostasis and reveal specific chronic changes inMyelin composition that may affect behavior and attempts to rescue myelin deficits.
Abstract: Several observations suggest that iron is an essential factor in myelination and oligodendrocyte biology. However, the specific role of iron in these processes remains to be elucidated. This role could be as an essential cofactor in metabolic processes or as a transcriptional or translational regulator. In this study, we used animals models each with a unique defect in iron availability, storage, or transfer to test the hypothesis that disruptions in these mechanisms affect myelinogenesis and myelin composition. Disruption of iron availability either by limiting dietary iron or by altering iron storage capacity resulted in a decrease in myelin proteins and lipids but not the iron content of myelin. Among the integral myelin proteins, proteolipid protein was most consistently affected, suggesting that limiting iron to oligodendrocytes results not only in hypomyelination but also in a decrease in myelin compaction. Mice deficient in transferrin must receive transferrin injections beginning at birth to remain viable, and these mice had increases in all of the myelin components and in the iron content of the myelin. This finding indicates that the loss of endogenous iron mobility in oligodendrocytes could be overcome by application of exogenous transferrin. Overall, the results of this study demonstrate how myelin composition can be affected by loss of iron homeostasis and reveal specific chronic changes in myelin composition that may affect behavior and attempts to rescue myelin deficits.

225 citations

Journal ArticleDOI
TL;DR: The results suggest that a failure in the ubiquitination enzymatic system in brain cytosol may contribute to fibrillar pathology in AD.
Abstract: Alzheimer's disease (AD) is characterized by the presence of neurofibrillary tangles (NFT), senile plaques, and cerebrovascular deposits of amyloid-beta. Ubiquitin has also been shown to be present in some of the inclusions characteristic of this disease. To obtain further insight into the role played by the ubiquitin pathway in AD, we investigated the capacity of postmortem samples of cerebral cortex from normal and AD patients to form high-molecular-weight ubiquitin-protein conjugates. Activity of the ubiquitin-activating enzyme (E1) and ubiquitin-conjugating enzymes (E2) involved in the ubiquitin pathway was also determined. In normal samples, the amount of high-molecular-weight ubiquitin-protein conjugates (HMW-UbPC) in cytosol increased with incubation time, whereas, in samples of AD cases, these were almost undetectable. The addition of an adult rat fraction, enriched in ubiquitinating enzymes, restored the capacity of AD brain cytosolic fraction to form conjugates. The trypsin-like proteolytic activity of the 26S proteasome was found to be decreased in AD cytosol brain. Assay of the activity of E1 and E2 by thiol-ester formation revealed a significant decrease in AD samples. Moreover, Western blotting using a specific antibody against E1 showed a dramatic drop of this enzyme in the cytosolic fraction, whereas normal levels were found in the particulate fraction, suggesting a possible delocalization of the enzyme. Our results suggest that a failure in the ubiquitination enzymatic system in brain cytosol may contribute to fibrillar pathology in AD.

220 citations

Journal ArticleDOI
TL;DR: It is suggested that microglial cells appear to have a very active role in cuprizone-induced oligodendroglial cell death and demyelination, through the production and secretion of pro-inflammatory cytokines.
Abstract: In order to further characterize the still unknown mechanism of cuprizone-induced demyelination, we investigated its effect on rat primary oligodendroglial cell cultures. Cell viability was not significantly affected by this treatment. However, when concentrations of IFNγ and/or TNFα having no deleterious effects per se on cell viability were added together with cuprizone, cell viability decreased significantly. In mitochondria isolated from cuprizone-treated glial cells, we observed a marked decrease in the activities of the various complexes of the respiratory chain, indicating a disruption of mitochondrial function. An enhancement in oxidant production was also observed in cuprizone and/or TNFα-treated oligodendroglial cells. In in vivo experiments, inhibition of microglial activation with minocycline prevented cuprizone-induced demyelination. Based on the above-mentioned results we suggest that these microglial cells appear to have a very active role in cuprizone-induced oligodendroglial cell death and demyelination, through the production and secretion of pro-inflammatory cytokines.

146 citations

Journal ArticleDOI
TL;DR: It is suggested that Staufen RNPs are involved in repositioning of most polysomal mRNAs, but not of recently synthesized transcripts, during the stress response.
Abstract: Staufen is a conserved double-stranded RNA-binding protein required for mRNA localization in Drosophila oocytes and embryos. The mammalian homologues Staufen 1 and Staufen 2 have been implicated in dendritic RNA targeting in neurons. Here we show that in rodent oligodendrocytes, these two proteins are present in two independent sets of RNA granules located at the distal myelinating processes. A third kind of RNA granules lacks Staufen and contains major myelin mRNAs. Myelin Staufen granules associate with microfilaments and microtubules, and their subcellular distribution is affected by polysome-disrupting drugs. Under oxidative stress, both Staufen 1 and Staufen 2 are recruited into stress granules (SGs), which are stress-induced organelles containing transiently silenced messengers. Staufen SGs contain the poly(A)-binding protein (PABP), the RNA-binding proteins HuR and TIAR, and small but not large ribosomal subunits. Staufen recruitment into perinuclear SGs is paralleled by a similar change in the overall localization of polyadenylated RNA. Under the same conditions, the distribution of recently transcribed and exported mRNAs is not affected. Our results indicate that Staufen 1 and Staufen 2 are novel and ubiquitous SG components and suggest that Staufen RNPs are involved in repositioning of most polysomal mRNAs, but not of recently synthesized transcripts, during the stress response.

145 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The goal of this review is to place the exciting advances that have occurred in understanding of the molecular biology of the types 1, 2, and 3 (D1, D2, and D3, respectively) iodothyronine deiodinases into a biochemical and physiological context.
Abstract: The goal of this review is to place the exciting advances that have occurred in our understanding of the molecular biology of the types 1, 2, and 3 (D1, D2, and D3, respectively) iodothyronine deiodinases into a biochemical and physiological context. We review new data regarding the mechanism of selenoprotein synthesis, the molecular and cellular biological properties of the individual deiodinases, including gene structure, mRNA and protein characteristics, tissue distribution, subcellular localization and topology, enzymatic properties, structure-activity relationships, and regulation of synthesis, inactivation, and degradation. These provide the background for a discussion of their role in thyroid physiology in humans and other vertebrates, including evidence that D2 plays a significant role in human plasma T3 production. We discuss the pathological role of D3 overexpression causing “consumptive hypothyroidism” as well as our current understanding of the pathophysiology of iodothyronine deiodination during illness and amiodarone therapy. Finally, we review the new insights from analysis of mice with targeted disruption of the Dio2 gene and overexpression of D2 in the myocardium. (Endocrine Reviews 23: 38–89, 2002)

1,670 citations

Journal ArticleDOI
TL;DR: This review deals with the recent progress related to the origin and differentiation of the oligodendrocytes, their relationships to other neural cells, and functional neuroglial interactions under physiological conditions and in demyelinating diseases.
Abstract: Oligodendrocytes, the myelin-forming cells of the central nervous system (CNS), and astrocytes constitute macroglia. This review deals with the recent progress related to the origin and differentiation of the oligodendrocytes, their relationships to other neural cells, and functional neuroglial interactions under physiological conditions and in demyelinating diseases. One of the problems in studies of the CNS is to find components, i.e., markers, for the identification of the different cells, in intact tissues or cultures. In recent years, specific biochemical, immunological, and molecular markers have been identified. Many components specific to differentiating oligodendrocytes and to myelin are now available to aid their study. Transgenic mice and spontaneous mutants have led to a better understanding of the targets of specific dys- or demyelinating diseases. The best examples are the studies concerning the effects of the mutations affecting the most abundant protein in the central nervous myelin, the p...

1,637 citations

Journal ArticleDOI
TL;DR: It is proposed that mRNA released from disassembled polysomes is sorted and remodeled at SGs, from which selected transcripts are delivered to PBs for degradation, an interaction that is promoted by the related mRNA decay factors TTP and BRF1.
Abstract: Stress granules (SGs) are cytoplasmic aggregates of stalled translational preinitiation complexes that accumulate during stress. GW bodies/processing bodies (PBs) are distinct cytoplasmic sites of mRNA degradation. In this study, we show that SGs and PBs are spatially, compositionally, and functionally linked. SGs and PBs are induced by stress, but SG assembly requires eIF2alpha phosphorylation, whereas PB assembly does not. They are also dispersed by inhibitors of translational elongation and share several protein components, including Fas-activated serine/threonine phosphoprotein, XRN1, eIF4E, and tristetraprolin (TTP). In contrast, eIF3, G3BP, eIF4G, and PABP-1 are restricted to SGs, whereas DCP1a and 2 are confined to PBs. SGs and PBs also can harbor the same species of mRNA and physically associate with one another in vivo, an interaction that is promoted by the related mRNA decay factors TTP and BRF1. We propose that mRNA released from disassembled polysomes is sorted and remodeled at SGs, from which selected transcripts are delivered to PBs for degradation.

1,366 citations

Journal ArticleDOI
TL;DR: A proteasome inhibitor — bortezomib — has been developed that has shown efficacy as an anticancer agent in the clinic and how can targeting such a universal, broadly active cellular component provide the selectivity and specificity that are required for cancer therapeutics?
Abstract: The proteasome is an abundant multi-enzyme complex that provides the main pathway for degradation of intracellular proteins in eukaryotic cells. As such, it controls the levels of proteins that are important for cell-cycle progression and apoptosis in normal and malignant cells; for example, cyclins, caspases, BCL2 and nuclear factor of κB. A proteasome inhibitor — bortezomib — has been developed that has shown efficacy as an anticancer agent in the clinic. How can targeting such a universal, broadly active cellular component provide the selectivity and specificity that are required for cancer therapeutics?

1,164 citations