scispace - formally typeset
Search or ask a question
Author

Juanbin Zhang

Other affiliations: Beijing Institute of Genomics
Bio: Juanbin Zhang is an academic researcher from Beijing Genomics Institute. The author has contributed to research in topics: Genome & Genomics. The author has an hindex of 5, co-authored 5 publications receiving 6985 citations. Previous affiliations of Juanbin Zhang include Beijing Institute of Genomics.

Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that miRNAs are present in the serum and plasma of humans and other animals such as mice, rats, bovine fetuses, calves, and horses, and can serve as potential biomarkers for the detection of various cancers and other diseases.
Abstract: Dysregulated expression of microRNAs (miRNAs) in various tissues has been associated with a variety of diseases, including cancers. Here we demonstrate that miRNAs are present in the serum and plasma of humans and other animals such as mice, rats, bovine fetuses, calves, and horses. The levels of miRNAs in serum are stable, reproducible, and consistent among individuals of the same species. Employing Solexa, we sequenced all serum miRNAs of healthy Chinese subjects and found over 100 and 91 serum miRNAs in male and female subjects, respectively. We also identified specific expression patterns of serum miRNAs for lung cancer, colorectal cancer, and diabetes, providing evidence that serum miRNAs contain fingerprints for various diseases. Two non-small cell lung cancer-specific serum miRNAs obtained by Solexa were further validated in an independent trial of 75 healthy donors and 152 cancer patients, using quantitative reverse transcription polymerase chain reaction assays. Through these analyses, we conclude that serum miRNAs can serve as potential biomarkers for the detection of various cancers and other diseases.

4,184 citations

Journal ArticleDOI
TL;DR: This study establishes that five of the cucumber's seven chromosomes arose from fusions of ten ancestral chromosomes after divergence from Cucumis melo, and identifies 686 gene clusters related to phloem function.
Abstract: Cucumber is an economically important crop as well as a model system for sex determination studies and plant vascular biology. Here we report the draft genome sequence of Cucumis sativus var. sativus L., assembled using a novel combination of traditional Sanger and next-generation Illumina GA sequencing technologies to obtain 72.2-fold genome coverage. The absence of recent whole-genome duplication, along with the presence of few tandem duplications, explains the small number of genes in the cucumber. Our study establishes that five of the cucumber's seven chromosomes arose from fusions of ten ancestral chromosomes after divergence from Cucumis melo. The sequenced cucumber genome affords insight into traits such as its sex expression, disease resistance, biosynthesis of cucurbitacin and 'fresh green' odor. We also identify 686 gene clusters related to phloem function. The cucumber genome provides a valuable resource for developing elite cultivars and for studying the evolution and function of the plant vascular system.

1,289 citations

Journal ArticleDOI
Ruiqiang Li, Wei Fan, Geng Tian1, Hongmei Zhu, Lin He2, Lin He3, Jing Cai4, Jing Cai1, Quanfei Huang, Qingle Cai5, Bo Li, Yinqi Bai, Zhihe Zhang6, Ya-Ping Zhang4, Wen Wang4, Jun Li, Fuwen Wei1, Heng Li7, Min Jian, Jianwen Li, Zhaolei Zhang8, Rasmus Nielsen9, Dawei Li, Wanjun Gu10, Zhentao Yang, Zhaoling Xuan, Oliver A. Ryder, Frederick C. Leung11, Yan Zhou, Jianjun Cao, Xiao Sun10, Yonggui Fu12, Xiaodong Fang, Xiaosen Guo, Bo Wang, Rong Hou6, Fujun Shen6, Bo Mu, Peixiang Ni, Runmao Lin, Wubin Qian, Guo-Dong Wang1, Guo-Dong Wang4, Chang Yu, Wenhui Nie4, Jinhuan Wang4, Zhigang Wu, Huiqing Liang, Jiumeng Min5, Qi Wu1, Shifeng Cheng5, Jue Ruan1, Mingwei Wang, Zhongbin Shi, Ming Wen, Binghang Liu, Xiaoli Ren, Huisong Zheng, Dong Dong8, Kathleen Cook8, Gao Shan, Hao Zhang, Carolin Kosiol13, Xueying Xie10, Zuhong Lu10, Hancheng Zheng, Yingrui Li1, Cynthia C. Steiner, Tommy Tsan-Yuk Lam11, Siyuan Lin, Qinghui Zhang, Guoqing Li, Jing Tian, Timing Gong, Hongde Liu10, Dejin Zhang10, Lin Fang, Chen Ye, Juanbin Zhang, Wenbo Hu12, Anlong Xu12, Yuanyuan Ren, Guojie Zhang4, Guojie Zhang1, Michael William Bruford14, Qibin Li1, Lijia Ma1, Yiran Guo1, Na An, Yujie Hu1, Yang Zheng1, Yongyong Shi3, Zhiqiang Li3, Qing Liu, Yanling Chen, Jing Zhao, Ning Qu5, Shancen Zhao, Feng Tian, Xiaoling Wang, Haiyin Wang, Lizhi Xu, Xiao Liu, Tomas Vinar15, Yajun Wang16, Tak-Wah Lam11, Siu-Ming Yiu11, Shiping Liu17, Hemin Zhang, Desheng Li, Yan Huang, Xia Wang, Guohua Yang, Zhi Jiang, Junyi Wang, Nan Qin, Li Li, Jingxiang Li, Lars Bolund, Karsten Kristiansen18, Gane Ka-Shu Wong19, Maynard V. Olson20, Xiuqing Zhang, Songgang Li, Huanming Yang, Jing Wang, Jun Wang18 
21 Jan 2010-Nature
TL;DR: Using next-generation sequencing technology alone, a draft sequence of the giant panda genome is generated and assembled, indicating that its bamboo diet might be more dependent on its gut microbiome than its own genetic composition.
Abstract: Using next-generation sequencing technology alone, we have successfully generated and assembled a draft sequence of the giant panda genome. The assembled contigs (2.25 gigabases (Gb)) cover approximately 94% of the whole genome, and the remaining gaps (0.05 Gb) seem to contain carnivore-specific repeats and tandem repeats. Comparisons with the dog and human showed that the panda genome has a lower divergence rate. The assessment of panda genes potentially underlying some of its unique traits indicated that its bamboo diet might be more dependent on its gut microbiome than its own genetic composition. We also identified more than 2.7 million heterozygous single nucleotide polymorphisms in the diploid genome. Our data and analyses provide a foundation for promoting mammalian genetic research, and demonstrate the feasibility for using next-generation sequencing technologies for accurate, cost-effective and rapid de novo assembly of large eukaryotic genomes.

1,109 citations

Journal ArticleDOI
06 Nov 2008-Nature
TL;DR: Genotyping analysis showed that SNP identification had high accuracy and consistency, indicating the high sequence quality of this assembly, and the potential usefulness of next-generation sequencing technologies for personal genomics.
Abstract: Here we present the first diploid genome sequence of an Asian individual. The genome was sequenced to 36-fold average coverage using massively parallel sequencing technology. We aligned the short reads onto the NCBI human reference genome to 99.97% coverage, and guided by the reference genome, we used uniquely mapped reads to assemble a high-quality consensus sequence for 92% of the Asian individual's genome. We identified approximately 3 million single-nucleotide polymorphisms (SNPs) inside this region, of which 13.6% were not in the dbSNP database. Genotyping analysis showed that SNP identification had high accuracy and consistency, indicating the high sequence quality of this assembly. We also carried out heterozygote phasing and haplotype prediction against HapMap CHB and JPT haplotypes (Chinese and Japanese, respectively), sequence comparison with the two available individual genomes (J. D. Watson and J. C. Venter), and structural variation identification. These variations were considered for their potential biological impact. Our sequence data and analyses demonstrate the potential usefulness of next-generation sequencing technologies for personal genomics.

963 citations

Journal ArticleDOI
Ruiqiang Li1, Ruiqiang Li2, Wei Fan2, Geng Tian2, Geng Tian3, Zhu Hongmei2, Lin He4, Lin He5, Jing Cai6, Jing Cai3, Quanfei Huang2, Qingle Cai2, Qingle Cai7, Bo Li2, Yinqi Bai2, Zhihe Zhang8, Ya-Ping Zhang6, Wen Wang6, Jun Li2, Fuwen Wei, Heng Li9, Min Jian2, Jianwen Li2, Zhaolei Zhang10, Rasmus Nielsen11, Dawei Li2, Wanjun Gu12, Zhentao Yang2, Zhaoling Xuan2, Oliver A. Ryder, Frederick C. Leung13, Yan Zhou2, Jianjun Cao2, Xiao Sun12, Yonggui Fu14, Xiaodong Fang2, Xiaosen Guo2, Bo Wang2, Rong Hou8, Fujun Shen8, Bo Mu2, Peixiang Ni2, Runmao Lin2, Wubin Qian2, Guo-Dong Wang6, Guo-Dong Wang3, Chang Yu2, Wenhui Nie6, Jinhuan Wang6, Zhigang Wu2, Huiqing Liang2, Jiumeng Min7, Jiumeng Min2, Qi Wu, Shifeng Cheng7, Shifeng Cheng2, Jue Ruan3, Jue Ruan2, Mingwei Wang2, Zhongbin Shi2, Ming Wen2, Binghang Liu2, Xiaoli Ren2, Huisong Zheng2, Dong Dong10, Kathleen Cook10, Gao Shan2, Hao Zhang2, Carolin Kosiol15, Xueying Xie12, Zuhong Lu12, Hancheng Zheng2, Yingrui Li2, Yingrui Li3, Cynthia C. Steiner, Tommy Tsan-Yuk Lam13, Siyuan Lin2, Qinghui Zhang2, Guoqing Li2, Jing Tian2, Timing Gong2, Hongde Liu12, Dejin Zhang12, Lin Fang2, Chen Ye2, Juanbin Zhang2, Wenbo Hu14, Anlong Xu14, Yuanyuan Ren2, Guojie Zhang2, Guojie Zhang3, Guojie Zhang6, Michael William Bruford16, Qibin Li3, Qibin Li2, Lijia Ma3, Lijia Ma2, Yiran Guo3, Yiran Guo2, Na An2, Yujie Hu2, Yujie Hu3, Yang Zheng2, Yang Zheng3, Yongyong Shi4, Zhiqiang Li4, Qing Liu2, Yanling Chen2, Jing Zhao2, Ning Qu7, Ning Qu2, Shancen Zhao2, Feng Tian2, Xiaoling Wang2, Haiyin Wang2, Lizhi Xu2, Xiao Liu2, Tomas Vinar17, Yajun Wang18, Tak-Wah Lam13, Siu-Ming Yiu13, Shiping Liu19, Hemin Zhang, Desheng Li, Yan Huang, Xia Wang2, Guohua Yang2, Zhi Jiang2, Junyi Wang2, Nan Qin2, Li Li2, Jingxiang Li2, Lars Bolund2, Karsten Kristiansen2, Karsten Kristiansen1, Gane Ka-Shu Wong2, Gane Ka-Shu Wong20, Maynard V. Olson21, Xiuqing Zhang2, Songgang Li2, Huanming Yang2, Jian Wang2, Jun Wang1, Jun Wang2 
25 Feb 2010-Nature
TL;DR: This corrects the article to show that the Higgs boson genome is a “spatially aggregating ‘spatiotemporal ’ organisation’, rather than a ‘cell-based’ organisation, which is more closely related to the immune system.
Abstract: Nature 463, 311–317 (2010) In this Article, the Latin species name of the giant panda was written incorrectly as Ailuropoda melanoleura. The correct name is Ailuropoda melanoleuca.

18 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The GATK programming framework enables developers and analysts to quickly and easily write efficient and robust NGS tools, many of which have already been incorporated into large-scale sequencing projects like the 1000 Genomes Project and The Cancer Genome Atlas.
Abstract: Next-generation DNA sequencing (NGS) projects, such as the 1000 Genomes Project, are already revolutionizing our understanding of genetic variation among individuals. However, the massive data sets generated by NGS—the 1000 Genome pilot alone includes nearly five terabases—make writing feature-rich, efficient, and robust analysis tools difficult for even computationally sophisticated individuals. Indeed, many professionals are limited in the scope and the ease with which they can answer scientific questions by the complexity of accessing and manipulating the data produced by these machines. Here, we discuss our Genome Analysis Toolkit (GATK), a structured programming framework designed to ease the development of efficient and robust analysis tools for next-generation DNA sequencers using the functional programming philosophy of MapReduce. The GATK provides a small but rich set of data access patterns that encompass the majority of analysis tool needs. Separating specific analysis calculations from common data management infrastructure enables us to optimize the GATK framework for correctness, stability, and CPU and memory efficiency and to enable distributed and shared memory parallelization. We highlight the capabilities of the GATK by describing the implementation and application of robust, scale-tolerant tools like coverage calculators and single nucleotide polymorphism (SNP) calling. We conclude that the GATK programming framework enables developers and analysts to quickly and easily write efficient and robust NGS tools, many of which have already been incorporated into large-scale sequencing projects like the 1000 Genomes Project and The Cancer Genome Atlas.

20,557 citations

Journal ArticleDOI
TL;DR: Bowtie extends previous Burrows-Wheeler techniques with a novel quality-aware backtracking algorithm that permits mismatches and can be used simultaneously to achieve even greater alignment speeds.
Abstract: Bowtie is an ultrafast, memory-efficient alignment program for aligning short DNA sequence reads to large genomes. For the human genome, Burrows-Wheeler indexing allows Bowtie to align more than 25 million reads per CPU hour with a memory footprint of approximately 1.3 gigabytes. Bowtie extends previous Burrows-Wheeler techniques with a novel quality-aware backtracking algorithm that permits mismatches. Multiple processor cores can be used simultaneously to achieve even greater alignment speeds. Bowtie is open source http://bowtie.cbcb.umd.edu.

20,335 citations

Journal ArticleDOI
28 Oct 2010-Nature
TL;DR: The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation as a foundation for investigating the relationship between genotype and phenotype as mentioned in this paper, and the results of the pilot phase of the project, designed to develop and compare different strategies for genomewide sequencing with high-throughput platforms.
Abstract: The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation as a foundation for investigating the relationship between genotype and phenotype. Here we present results of the pilot phase of the project, designed to develop and compare different strategies for genome-wide sequencing with high-throughput platforms. We undertook three projects: low-coverage whole-genome sequencing of 179 individuals from four populations; high-coverage sequencing of two mother-father-child trios; and exon-targeted sequencing of 697 individuals from seven populations. We describe the location, allele frequency and local haplotype structure of approximately 15 million single nucleotide polymorphisms, 1 million short insertions and deletions, and 20,000 structural variants, most of which were previously undescribed. We show that, because we have catalogued the vast majority of common variation, over 95% of the currently accessible variants found in any individual are present in this data set. On average, each person is found to carry approximately 250 to 300 loss-of-function variants in annotated genes and 50 to 100 variants previously implicated in inherited disorders. We demonstrate how these results can be used to inform association and functional studies. From the two trios, we directly estimate the rate of de novo germline base substitution mutations to be approximately 10(-8) per base pair per generation. We explore the data with regard to signatures of natural selection, and identify a marked reduction of genetic variation in the neighbourhood of genes, due to selection at linked sites. These methods and public data will support the next phase of human genetic research.

7,538 citations

Journal ArticleDOI
TL;DR: A technical review of template preparation, sequencing and imaging, genome alignment and assembly approaches, and recent advances in current and near-term commercially available NGS instruments is presented.
Abstract: Demand has never been greater for revolutionary technologies that deliver fast, inexpensive and accurate genome information. This challenge has catalysed the development of next-generation sequencing (NGS) technologies. The inexpensive production of large volumes of sequence data is the primary advantage over conventional methods. Here, I present a technical review of template preparation, sequencing and imaging, genome alignment and assembly approaches, and recent advances in current and near-term commercially available NGS instruments. I also outline the broad range of applications for NGS technologies, in addition to providing guidelines for platform selection to address biological questions of interest.

7,023 citations

Journal ArticleDOI
TL;DR: This work provides an updated assembly version of the 2008 Asian genome using SOAPdenovo2, a new algorithm design that reduces memory consumption in graph construction, resolves more repeat regions in contig assembly, increases coverage and length in scaffold construction, improves gap closing, and optimizes for large genome.
Abstract: There is a rapidly increasing amount of de novo genome assembly using next-generation sequencing (NGS) short reads; however, several big challenges remain to be overcome in order for this to be efficient and accurate. SOAPdenovo has been successfully applied to assemble many published genomes, but it still needs improvement in continuity, accuracy and coverage, especially in repeat regions. To overcome these challenges, we have developed its successor, SOAPdenovo2, which has the advantage of a new algorithm design that reduces memory consumption in graph construction, resolves more repeat regions in contig assembly, increases coverage and length in scaffold construction, improves gap closing, and optimizes for large genome. Benchmark using the Assemblathon1 and GAGE datasets showed that SOAPdenovo2 greatly surpasses its predecessor SOAPdenovo and is competitive to other assemblers on both assembly length and accuracy. We also provide an updated assembly version of the 2008 Asian (YH) genome using SOAPdenovo2. Here, the contig and scaffold N50 of the YH genome were ~20.9 kbp and ~22 Mbp, respectively, which is 3-fold and 50-fold longer than the first published version. The genome coverage increased from 81.16% to 93.91%, and memory consumption was ~2/3 lower during the point of largest memory consumption.

4,284 citations