scispace - formally typeset
Search or ask a question
Author

Juanzi Li

Other affiliations: Université de Montréal
Bio: Juanzi Li is an academic researcher from Tsinghua University. The author has contributed to research in topics: Ontology (information science) & Semantic Web. The author has an hindex of 43, co-authored 267 publications receiving 8106 citations. Previous affiliations of Juanzi Li include Université de Montréal.


Papers
More filters
Proceedings ArticleDOI
Jie Tang1, Jing Zhang1, Limin Yao1, Juanzi Li1, Li Zhang2, Zhong Su2 
24 Aug 2008
TL;DR: The architecture and main features of the ArnetMiner system, which aims at extracting and mining academic social networks, are described and a unified modeling approach to simultaneously model topical aspects of papers, authors, and publication venues is proposed.
Abstract: This paper addresses several key issues in the ArnetMiner system, which aims at extracting and mining academic social networks. Specifically, the system focuses on: 1) Extracting researcher profiles automatically from the Web; 2) Integrating the publication data into the network from existing digital libraries; 3) Modeling the entire academic network; and 4) Providing search services for the academic network. So far, 448,470 researcher profiles have been extracted using a unified tagging approach. We integrate publications from online Web databases and propose a probabilistic framework to deal with the name ambiguity problem. Furthermore, we propose a unified modeling approach to simultaneously model topical aspects of papers, authors, and publication venues. Search services such as expertise search and people association search have been provided based on the modeling results. In this paper, we describe the architecture and main features of the system. We also present the empirical evaluation of the proposed methods.

2,058 citations

Journal ArticleDOI
TL;DR: This paper presents a dynamic multistrategy ontology alignment framework, named RiMOM, and proposes a systematic approach to quantitatively estimate the similarity characteristics for each alignment task and a strategy selection method to automatically combine the matching strategies based on two estimated factors.
Abstract: Ontology alignment identifies semantically matching entities in different ontologies. Various ontology alignment strategies have been proposed; however, few systems have explored how to automatically combine multiple strategies to improve the matching effectiveness. This paper presents a dynamic multistrategy ontology alignment framework, named RiMOM. The key insight in this framework is that similarity characteristics between ontologies may vary widely. We propose a systematic approach to quantitatively estimate the similarity characteristics for each alignment task and propose a strategy selection method to automatically combine the matching strategies based on two estimated factors. In the approach, we consider both textual and structural characteristics of ontologies. With RiMOM, we participated in the 2006 and 2007 campaigns of the Ontology Alignment Evaluation Initiative (OAEI). Our system is among the top three performers in benchmark data sets.

444 citations

Proceedings ArticleDOI
Xu Han1, Shulin Cao1, Xin Lv1, Yankai Lin1, Zhiyuan Liu1, Maosong Sun1, Juanzi Li1 
01 Nov 2018
TL;DR: An open toolkit for knowledge embedding, which provides a unified framework and various fundamental models to embed knowledge graphs into a continuous low-dimensional space and the embeddings of some existing large-scale knowledge graphs pre-trained by OpenKE are available.
Abstract: We release an open toolkit for knowledge embedding (OpenKE), which provides a unified framework and various fundamental models to embed knowledge graphs into a continuous low-dimensional space OpenKE prioritizes operational efficiency to support quick model validation and large-scale knowledge representation learning Meanwhile, OpenKE maintains sufficient modularity and extensibility to easily incorporate new models into the framework Besides the toolkit, the embeddings of some existing large-scale knowledge graphs pre-trained by OpenKE are also available, which can be directly applied for many applications including information retrieval, personalized recommendation and question answering The toolkit, documentation, and pre-trained embeddings are all released on http://openkethunlporg/

297 citations

Posted Content
TL;DR: A unified model for Knowledge Embedding and Pre-trained LanguagERepresentation (KEPLER), which can not only better integrate factual knowledge into PLMs but also produce effective text-enhanced KE with the strong PLMs is proposed.
Abstract: Pre-trained language representation models (PLMs) cannot well capture factual knowledge from text. In contrast, knowledge embedding (KE) methods can effectively represent the relational facts in knowledge graphs (KGs) with informative entity embeddings, but conventional KE models cannot take full advantage of the abundant textual information. In this paper, we propose a unified model for Knowledge Embedding and Pre-trained LanguagE Representation (KEPLER), which can not only better integrate factual knowledge into PLMs but also produce effective text-enhanced KE with the strong PLMs. In KEPLER, we encode textual entity descriptions with a PLM as their embeddings, and then jointly optimize the KE and language modeling objectives. Experimental results show that KEPLER achieves state-of-the-art performances on various NLP tasks, and also works remarkably well as an inductive KE model on KG link prediction. Furthermore, for pre-training and evaluating KEPLER, we construct Wikidata5M, a large-scale KG dataset with aligned entity descriptions, and benchmark state-of-the-art KE methods on it. It shall serve as a new KE benchmark and facilitate the research on large KG, inductive KE, and KG with text. The source code can be obtained from this https URL.

269 citations

Proceedings ArticleDOI
Zi Yang1, Jingyi Guo1, Keke Cai2, Jie Tang1, Juanzi Li1, Li Zhang2, Zhong Su2 
26 Oct 2010
TL;DR: This paper proposes a factor graph model to predict users' retweeting behaviors and shows that this method can achieve a precision of 28.81% and recall of 37.33% for prediction of the retweet behaviors.
Abstract: Retweeting is an important action (behavior) on Twitter, indicating the behavior that users re-post microblogs of their friends. While much work has been conducted for mining textual content that users generate or analyzing the social network structure, few publications systematically study the underlying mechanism of the retweeting behaviors. In this paper, we perform an interesting analysis for the problem on Twitter. We have found that almost 25.5% of the tweets posted by users are actually retweeted from friends' blog spaces. Our investigation unveils that for the retweet behaviors, some statistics still follows the power law distribution, while some others violate the state-of-the-art distribution for Web. Based on these important observations, we propose a factor graph model to predict users' retweeting behaviors. Experimental results on the Twitter data set show that our method can achieve a precision of 28.81% and recall of 37.33% for prediction of the retweet behaviors.

265 citations


Cited by
More filters
Proceedings ArticleDOI
22 Jan 2006
TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Abstract: We will review some of the major results in random graphs and some of the more challenging open problems. We will cover algorithmic and structural questions. We will touch on newer models, including those related to the WWW.

7,116 citations

Journal ArticleDOI
TL;DR: This article provides a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields and proposes a new taxonomy to divide the state-of-the-art GNNs into four categories, namely, recurrent GNNS, convolutional GNN’s, graph autoencoders, and spatial–temporal Gnns.
Abstract: Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications, where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on the existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this article, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art GNNs into four categories, namely, recurrent GNNs, convolutional GNNs, graph autoencoders, and spatial–temporal GNNs. We further discuss the applications of GNNs across various domains and summarize the open-source codes, benchmark data sets, and model evaluation of GNNs. Finally, we propose potential research directions in this rapidly growing field.

4,584 citations

Journal Article
TL;DR: Prospect Theory led cognitive psychology in a new direction that began to uncover other human biases in thinking that are probably not learned but are part of the authors' brain’s wiring.
Abstract: In 1974 an article appeared in Science magazine with the dry-sounding title “Judgment Under Uncertainty: Heuristics and Biases” by a pair of psychologists who were not well known outside their discipline of decision theory. In it Amos Tversky and Daniel Kahneman introduced the world to Prospect Theory, which mapped out how humans actually behave when faced with decisions about gains and losses, in contrast to how economists assumed that people behave. Prospect Theory turned Economics on its head by demonstrating through a series of ingenious experiments that people are much more concerned with losses than they are with gains, and that framing a choice from one perspective or the other will result in decisions that are exactly the opposite of each other, even if the outcomes are monetarily the same. Prospect Theory led cognitive psychology in a new direction that began to uncover other human biases in thinking that are probably not learned but are part of our brain’s wiring.

4,351 citations

Proceedings ArticleDOI
18 May 2015
TL;DR: A novel network embedding method called the ``LINE,'' which is suitable for arbitrary types of information networks: undirected, directed, and/or weighted, and optimizes a carefully designed objective function that preserves both the local and global network structures.
Abstract: This paper studies the problem of embedding very large information networks into low-dimensional vector spaces, which is useful in many tasks such as visualization, node classification, and link prediction. Most existing graph embedding methods do not scale for real world information networks which usually contain millions of nodes. In this paper, we propose a novel network embedding method called the ``LINE,'' which is suitable for arbitrary types of information networks: undirected, directed, and/or weighted. The method optimizes a carefully designed objective function that preserves both the local and global network structures. An edge-sampling algorithm is proposed that addresses the limitation of the classical stochastic gradient descent and improves both the effectiveness and the efficiency of the inference. Empirical experiments prove the effectiveness of the LINE on a variety of real-world information networks, including language networks, social networks, and citation networks. The algorithm is very efficient, which is able to learn the embedding of a network with millions of vertices and billions of edges in a few hours on a typical single machine. The source code of the LINE is available online\footnote{\url{https://github.com/tangjianpku/LINE}}.

3,492 citations

Proceedings ArticleDOI
TL;DR: LINE as discussed by the authors proposes a network embedding method called LINE, which is suitable for arbitrary types of information networks: undirected, directed, and/or weighted, and optimizes a carefully designed objective function that preserves both the local and global network structures.
Abstract: This paper studies the problem of embedding very large information networks into low-dimensional vector spaces, which is useful in many tasks such as visualization, node classification, and link prediction. Most existing graph embedding methods do not scale for real world information networks which usually contain millions of nodes. In this paper, we propose a novel network embedding method called the "LINE," which is suitable for arbitrary types of information networks: undirected, directed, and/or weighted. The method optimizes a carefully designed objective function that preserves both the local and global network structures. An edge-sampling algorithm is proposed that addresses the limitation of the classical stochastic gradient descent and improves both the effectiveness and the efficiency of the inference. Empirical experiments prove the effectiveness of the LINE on a variety of real-world information networks, including language networks, social networks, and citation networks. The algorithm is very efficient, which is able to learn the embedding of a network with millions of vertices and billions of edges in a few hours on a typical single machine. The source code of the LINE is available online.

3,447 citations