scispace - formally typeset
Search or ask a question
Author

Judith A. Seidel

Bio: Judith A. Seidel is an academic researcher from Kyoto University. The author has contributed to research in topics: Immunotherapy & Nivolumab. The author has an hindex of 5, co-authored 10 publications receiving 663 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The mechanisms of action and the limitations of anti-PD-1/PD-L1 and anti-CTLA-4 antibodies which are the two types of checkpoint inhibitors currently available to patients are examined and the future avenues of their use in melanoma and other cancers are explored.
Abstract: Melanoma, a skin cancer associated with high mortality rates, is highly radio- and chemotherapy resistant but can also be very immunogenic. These circumstances have led to a recent surge in research into therapies aiming to boost anti-tumor immune responses in cancer patients. Among these immunotherapies, neutralizing antibodies targeting the immune checkpoints T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1) are being hailed as particularly successful. These antibodies have resulted in dramatic improvements in disease outcome and are now clinically approved in many countries. However, the majority of advanced stage melanoma patients do not respond or will relapse, and the hunt for the "magic bullet" to treat the disease continues. This review examines the mechanisms of action and the limitations of anti-PD-1/PD-L1 and anti-CTLA-4 antibodies which are the two types of checkpoint inhibitors currently available to patients and further explores the future avenues of their use in melanoma and other cancers.

810 citations

Journal ArticleDOI
TL;DR: This review summarizes the etiopathogenesis of AD and provides the rationale for selecting a novel targeted therapy, Dupilumab, which has recently been developed for AD treatment.
Abstract: Atopic dermatitis (AD) is a chronic skin disorder characterized by pruritus and recurrent eczematous lesions that are accompanied by T-helper (Th)2-dominated inflammation. AD Etiology is not yet completely understood, but it is multifactorial. Moreover, the disease is characterized by complex interactions between genetic and environmental factors, such as skin barrier dysfunctions, allergy/immunity, and pruritus. For example, filaggrin is a key protein involved in skin barrier function. Th2 cells produce interleukin (IL)-31, which provokes pruritus, and other Th2 cytokines decrease filaggrin expression by keratinocytes. Dupilumab has recently been developed for AD treatment; its mechanism of action is to bind to IL-4 receptor α and inhibit downstream signaling induced by IL-4 and IL-13. This review summarizes the etiopathogenesis of AD and provides the rationale for selecting a novel targeted therapy.

111 citations

Journal ArticleDOI
TL;DR: The results suggest that PD-1/PD-L1 expression is related to CAS progression, and the treatment with anti-PD-1 antibodies could be a new therapeutic option for CAS.
Abstract: Cutaneous angiosarcoma (CAS) is a malignant sarcoma with poor prognosis. Programmed cell death-1 (PD-1)/programmed cell death-1 ligand-1 (PD-L1) expression reflects antitumor immunity, and is associated with patient prognosis in various cancers. The purpose of this study is to investigate the relationship between PD-1/PD-L1 expression and CAS prognosis. CAS cases (n = 106) were immunohistochemically studied for PD-L1 and PD-1 expression, and the correlation with patient prognosis was analyzed. PD-L1 expression was assessed by flow cytometry on three CAS cell lines with or without IFNγ stimulation. A total of 30.2% of patients' samples were positive for PD-L1, and 17.9% showed a high infiltration of PD-1-positive cells. Univariate analysis showed a significant relationship between a high infiltration of PD-1-positive cells with tumor site PD-L1 expression and favorable survival in stage 1 patients (p = 0.014, log-rank test). Multivariable Cox-proportional hazard regression analysis also showed that patients with a high infiltration of PD-1-positive cells with tumor site PD-L1 expression were more likely to have favorable survival, after adjustment with possible confounders (hazard ratio (HR) = 0.38, p = 0.021, 95% confidence interval (CI) 0.16-0.86). Immunofluorescence staining of CAS samples revealed that PD-L1-positive cells were adjacent to PD-1-positive cells and/or tumor stroma with high IFNγ expression. In vitro stimulation with IFNγ increased PD-L1 expression in two out of three established CAS cell lines. Our results suggest that PD-1/PD-L1 expression is related to CAS progression, and the treatment with anti-PD-1 antibodies could be a new therapeutic option for CAS.

60 citations

Journal ArticleDOI
TL;DR: It is suggested that Th9 cells, which produce IL-9, play an important role in the successful treatment of melanoma patients with nivolumab and represent a valid biomarker to be further developed in the setting of anti-PD-1 therapy.
Abstract: Although nivolumab is associated with a significant improvement in overall survival and progression-free survival, only 20 to 40% of patients experience long-term benefit. It is therefore of great interest to identify a predictive marker of clinical benefit for nivolumab. To address this issue, the frequencies of CD4+ T cell subsets (Treg, Th1, Th2, Th9, Th17 and Th22), CD8+ T cells, and serum cytokine levels (IFNγ, IL-4, IL-9, IL-10, TGF-β) were assessed in 46 patients with melanoma. Eighteen patients responded to nivolumab, and the other 28 patients did not. An early increase in Th9 cell counts during the treatment with nivolumab was associated with an improved clinical response. Before the first nivolumab infusion, the responders displayed elevated serum concentrations of TGF-β compared to non-responders. Th9 induction by IL-4 and TGF-β was enhanced by PD-1/PD-L1 blockade in vitro. The role of IL-9 in disease progression was further assessed using a murine melanoma model. In vivo IL-9 blockade promoted melanoma progression in mice using an autochthonous mouse melanoma model, and the cytotoxic ability of murine melanoma-specific CD8+ T cells was enhanced in the presence of IL-9 in vitro. These findings suggest that Th9 cells, which produce IL-9, play an important role in the successful treatment of melanoma patients with nivolumab. Th9 cells therefore represent a valid biomarker to be further developed in the setting of anti-PD-1 therapy.

56 citations

Journal ArticleDOI
17 Mar 2017
TL;DR: The properties of PD-1 and CTLA-4 in physiological and tumor settings are summarized, and the treatment efficacy, side effects and biomarkers of their inhibitors are examined.
Abstract: Immune checkpoints are essential for preventing immunopathology but can also obstruct anti-tumor immune responses. Recent medical advances in blocking these mechanisms have therefore opened promising avenues in the treatment of cancer. Various blocking antibodies targeting the immune checkpoints programmed cell death 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) are now approved for human use. This review summarizes the properties of PD-1 and CTLA-4 in physiological and tumor settings, and examines the treatment efficacy, side effects and biomarkers of their inhibitors. Future avenues in the application and development of immune checkpoint inhibitors for the treatment of cancer are also explored.

14 citations


Cited by
More filters
Journal ArticleDOI
23 Jan 2020-Nature
TL;DR: Immune profiling of the tumour microenvironment of soft-tissue sarcoma identifies a group of patients with high levels of B-cell infiltration and tertiary lymphoid structures that have improved survival and a high response rate to immune checkpoint blockade therapy.
Abstract: Soft-tissue sarcomas represent a heterogeneous group of cancer, with more than 50 histological subtypes1,2. The clinical presentation of patients with different subtypes is often atypical, and responses to therapies such as immune checkpoint blockade vary widely3,4. To explain this clinical variability, here we study gene expression profiles in 608 tumours across subtypes of soft-tissue sarcoma. We establish an immune-based classification on the basis of the composition of the tumour microenvironment and identify five distinct phenotypes: immune-low (A and B), immune-high (D and E), and highly vascularized (C) groups. In situ analysis of an independent validation cohort shows that class E was characterized by the presence of tertiary lymphoid structures that contain T cells and follicular dendritic cells and are particularly rich in B cells. B cells are the strongest prognostic factor even in the context of high or low CD8+ T cells and cytotoxic contents. The class-E group demonstrated improved survival and a high response rate to PD1 blockade with pembrolizumab in a phase 2 clinical trial. Together, this work confirms the immune subtypes in patients with soft-tissue sarcoma, and unravels the potential of B-cell-rich tertiary lymphoid structures to guide clinical decision-making and treatments, which could have broader applications in other diseases. Immune profiling of the tumour microenvironment of soft-tissue sarcoma identifies a group of patients with high levels of B-cell infiltration and tertiary lymphoid structures that have improved survival and a high response rate to immune checkpoint blockade therapy.

981 citations

Journal ArticleDOI
TL;DR: The mechanisms of action and the limitations of anti-PD-1/PD-L1 and anti-CTLA-4 antibodies which are the two types of checkpoint inhibitors currently available to patients are examined and the future avenues of their use in melanoma and other cancers are explored.
Abstract: Melanoma, a skin cancer associated with high mortality rates, is highly radio- and chemotherapy resistant but can also be very immunogenic. These circumstances have led to a recent surge in research into therapies aiming to boost anti-tumor immune responses in cancer patients. Among these immunotherapies, neutralizing antibodies targeting the immune checkpoints T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1) are being hailed as particularly successful. These antibodies have resulted in dramatic improvements in disease outcome and are now clinically approved in many countries. However, the majority of advanced stage melanoma patients do not respond or will relapse, and the hunt for the "magic bullet" to treat the disease continues. This review examines the mechanisms of action and the limitations of anti-PD-1/PD-L1 and anti-CTLA-4 antibodies which are the two types of checkpoint inhibitors currently available to patients and further explores the future avenues of their use in melanoma and other cancers.

810 citations

Journal ArticleDOI
TL;DR: This review provides an overview of existing CRC-targeted agents and their underlying mechanisms, as well as a discussion of their limitations and future trends.
Abstract: Colorectal cancer (CRC) is among the most lethal and prevalent malignancies in the world and was responsible for nearly 881,000 cancer-related deaths in 2018. Surgery and chemotherapy have long been the first choices for cancer patients. However, the prognosis of CRC has never been satisfying, especially for patients with metastatic lesions. Targeted therapy is a new optional approach that has successfully prolonged overall survival for CRC patients. Following successes with the anti-EGFR (epidermal growth factor receptor) agent cetuximab and the anti-angiogenesis agent bevacizumab, new agents blocking different critical pathways as well as immune checkpoints are emerging at an unprecedented rate. Guidelines worldwide are currently updating the recommended targeted drugs on the basis of the increasing number of high-quality clinical trials. This review provides an overview of existing CRC-targeted agents and their underlying mechanisms, as well as a discussion of their limitations and future trends.

690 citations

Journal ArticleDOI
TL;DR: Today, cancer research is always aimed at the study and development of new therapeutic approaches for cancer treatment, and several researchers are focused on the development of cell therapies, anti-tumor vaccines, and new biotechnological drugs that have already shown promising results in preclinical studies, therefore, in the near future, it will certainly assist to a new revolution in the field of medical oncology.
Abstract: The medical history of cancer began millennia ago. Historical findings of patients with cancer date back to ancient Egyptian and Greek civilizations, where this disease was predominantly treated with radical surgery and cautery that were often ineffective, leading to the death of patients. Over the centuries, important discoveries allowed to identify the biological and pathological features of tumors, without however contributing to the development of effective therapeutic approaches until the end of the 1800s, when the discovery of X-rays and their use for the treatment of tumors provided the first modern therapeutic approach in medical oncology. However, a real breakthrough took place after the Second World War, with the discovery of cytotoxic antitumor drugs and the birth of chemotherapy for the treatment of various hematological and solid tumors. Starting from this epochal turning point, there has been an exponential growth of studies concerning the use of new drugs for cancer treatment. The second fundamental breakthrough in the field of oncology and pharmacology took place at the beginning of the ‘80s, thanks to molecular and cellular biology studies that allowed the development of specific drugs for some molecular targets involved in neoplastic processes, giving rise to targeted therapy. Both chemotherapy and target therapy have significantly improved the survival and quality of life of cancer patients inducing sometimes complete tumor remission. Subsequently, at the turn of the third millennium, thanks to genetic engineering studies, there was a further advancement of clinical oncology and pharmacology with the introduction of monoclonal antibodies and immune checkpoint inhibitors for the treatment of advanced or metastatic tumors, for which no effective treatment was available before. Today, cancer research is always aimed at the study and development of new therapeutic approaches for cancer treatment. Currently, several researchers are focused on the development of cell therapies, anti-tumor vaccines, and new biotechnological drugs that have already shown promising results in preclinical studies, therefore, in the near future, we will certainly assist to a new revolution in the field of medical oncology.

526 citations

Journal ArticleDOI
07 May 2020
TL;DR: This Primer by Ramos-Casals and colleagues summarizes the epidemiology, mechanisms, diagnosis and treatment of immune-related adverse events and should be prescribed carefully to reduce the potential of short-term and long-term complications.
Abstract: Cancer immunotherapies have changed the landscape of cancer treatment during the past few decades. Among them, immune checkpoint inhibitors, which target PD-1, PD-L1 and CTLA-4, are increasingly used for certain cancers; however, this increased use has resulted in increased reports of immune-related adverse events (irAEs). These irAEs are unique and are different to those of traditional cancer therapies, and typically have a delayed onset and prolonged duration. IrAEs can involve any organ or system. These effects are frequently low grade and are treatable and reversible; however, some adverse effects can be severe and lead to permanent disorders. Management is primarily based on corticosteroids and other immunomodulatory agents, which should be prescribed carefully to reduce the potential of short-term and long-term complications. Thoughtful management of irAEs is important in optimizing quality of life and long-term outcomes.

518 citations