scispace - formally typeset
Search or ask a question
Author

Juergen Oberst

Bio: Juergen Oberst is an academic researcher from German Aerospace Center. The author has contributed to research in topics: Mars Exploration Program & Orbiter. The author has an hindex of 37, co-authored 167 publications receiving 5473 citations. Previous affiliations of Juergen Oberst include Technical University of Berlin & Moscow State University.


Papers
More filters
Journal ArticleDOI
TL;DR: The IAU/IAG Working Group on cartographic coordinates and rotational elements of the planets and satellites revises tables giving the directions of the north poles of rotation and the prime meridians of the asteroids as discussed by the authors.
Abstract: Every three years the IAU/IAG Working Group on cartographic coordinates and rotational elements of the planets and satellites revises tables giving the directions of the north poles of rotation and the prime meridians of the planets, satellites, and asteroids. Also presented are revised tables giving their sizes and shapes. Changes since the previous report are summarized in the Appendix.

526 citations

Journal ArticleDOI
TL;DR: The IAU Working Group on Cartographic Coordinates and Rotational Elements (WGPSN) as mentioned in this paper takes into account the IAU working group for planetary system Nomenclature and the International Astronomical Union (IAUWCN) definition of dwarf planets, and introduces improved values for the pole and rotation rate of Mercury, returns the rotation rates of Jupiter to a previous value, and adds the equatorial radius of the Sun for comparison.
Abstract: Every three years the IAU Working Group on Cartographic Coordinates and Rotational Elements revises tables giving the directions of the poles of rotation and the prime meridians of the planets, satellites, minor planets, and comets. This report takes into account the IAU Working Group for Planetary System Nomenclature (WGPSN) and the IAU Committee on Small Body Nomenclature (CSBN) definition of dwarf planets, introduces improved values for the pole and rotation rate of Mercury, returns the rotation rate of Jupiter to a previous value, introduces improved values for the rotation of five satellites of Saturn, and adds the equatorial radius of the Sun for comparison. It also adds or updates size and shape information for the Earth, Mars’ satellites Deimos and Phobos, the four Galilean satellites of Jupiter, and 22 satellites of Saturn. Pole, rotation, and size information has been added for the asteroids (21) Lutetia, (511) Davida, and (2867) Steins. Pole and rotation information has been added for (2) Pallas and (21) Lutetia. Pole and rotation and mean radius information has been added for (1) Ceres. Pole information has been updated for (4) Vesta. The high precision realization for the pole and rotation rate of the Moon is updated. Alternative orientation models for Mars, Jupiter, and Saturn are noted. The Working Group also reaffirms that once an observable feature at a defined longitude is chosen, a longitude definition origin should not change except under unusual circumstances. It is also noted that alternative coordinate systems may exist for various (e.g. dynamical) purposes, but specific cartographic coordinate system information continues to be recommended for each body. The Working Group elaborates on its purpose, and also announces its plans to occasionally provide limited updates to its recommendations via its website, in order to address community needs for some updates more often than every 3 years. Brief recommendations are also made to the general planetary community regarding the need for controlled products, and improved or consensus rotation models for Mars, Jupiter, and Saturn.

484 citations

Journal ArticleDOI
TL;DR: The Mars Express high-resolution stereo camera (HRSC) as discussed by the authors is a push-broom scanning instrument with nine CCD line detectors mounted in parallel on a focal plane, its unique feature is the ability to obtain near-simultaneous imaging data at high resolution, with along-track triple stereo, four colors and five different phase angles.

385 citations

Journal ArticleDOI
13 Feb 2009-Science
TL;DR: A global lunar topographic map with a spatial resolution of finer than 0.5 degree has been derived using data from the laser altimeter on board the Japanese lunar explorer Selenological and Engineering Explorer (SELENE or Kaguya), which reveals unbiased lunar topography for scales finer than a few hundred kilometers.
Abstract: A global lunar topographic map with a spatial resolution of finer than 0.5 degree has been derived using data from the laser altimeter (LALT) on board the Japanese lunar explorer Selenological and Engineering Explorer (SELENE or Kaguya). In comparison with the previous Unified Lunar Control Network (ULCN 2005) model, the new map reveals unbiased lunar topography for scales finer than a few hundred kilometers. Spherical harmonic analysis of global topographic data for the Moon, Earth, Mars, and Venus suggests that isostatic compensation is the prevailing lithospheric support mechanism at large scales. However, simple rigid support is suggested to dominate for the Moon, Venus, and Mars for smaller scales, which may indicate a drier lithosphere than on Earth, especially for the Moon and Venus.

274 citations

Journal ArticleDOI
TL;DR: In this article, the IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements revises tables giving the directions of the poles of rotation and the prime meridians of the planets, satellites, minor planets, and comets.
Abstract: Every three years the IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements revises tables giving the directions of the poles of rotation and the prime meridians of the planets, satellites, minor planets, and comets. This report introduces improved values for the pole and rotation rate of Pluto, Charon, and Phoebe, the pole of Jupiter, the sizes and shapes of Saturn satellites and Charon, and the poles, rotation rates, and sizes of some minor planets and comets. A high precision realization for the pole and rotation rate of the Moon is provided. The expression for the Sun’s rotation has been changed to be consistent with the planets and to account for light travel time

269 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Mars Orbiter Laser Altimeter (MOLA) has been used to measure the topography, surface roughness, and 1.064-μm reflectivity of Mars and the heights of volatile and dust clouds as mentioned in this paper.
Abstract: The Mars Orbiter Laser Altimeter (MOLA), an instrument on the Mars Global Surveyor spacecraft, has measured the topography, surface roughness, and 1.064-μm reflectivity of Mars and the heights of volatile and dust clouds. This paper discusses the function of the MOLA instrument and the acquisition, processing, and correction of observations to produce global data sets. The altimeter measurements have been converted to both gridded and spherical harmonic models for the topography and shape of Mars that have vertical and radial accuracies of ~1 m with respect to the planet's center of mass. The current global topographic grid has a resolution of 1/64° in latitude × 1/32° in longitude (1 × 2 km^2 at the equator). Reconstruction of the locations of incident laser pulses on the Martian surface appears to be at the 100-m spatial accuracy level and results in 2 orders of magnitude improvement in the global geodetic grid of Mars. Global maps of optical pulse width indicative of 100-m-scale surface roughness and 1.064-μm reflectivity with an accuracy of 5% have also been obtained.

1,542 citations

Journal ArticleDOI
TL;DR: The Context Camera (CTX) on the Mars Reconnaissance Orbiter (MRO) is a Facility Instrument (i.e., government-furnished equipment operated by a science team not responsible for design and fabrication) designed, built, and operated by Malin Space Science Systems and the MRO Mars Color Imager team (MARCI) as mentioned in this paper.
Abstract: [1] The Context Camera (CTX) on the Mars Reconnaissance Orbiter (MRO) is a Facility Instrument (i.e., government-furnished equipment operated by a science team not responsible for design and fabrication) designed, built, and operated by Malin Space Science Systems and the MRO Mars Color Imager team (MARCI). CTX will (1) provide context images for data acquired by other MRO instruments, (2) observe features of interest to NASA's Mars Exploration Program (e.g., candidate landing sites), and (3) conduct a scientific investigation, led by the MARCI team, of geologic, geomorphic, and meteorological processes on Mars. CTX consists of a digital electronics assembly; a 350 mm f/3.25 Schmidt-type telescope of catadioptric optical design with a 5.7° field of view, providing a ∼30-km-wide swath from ∼290 km altitude; and a 5000-element CCD with a band pass of 500–700 nm and 7 μm pixels, giving ∼6 m/pixel spatial resolution from MRO's nearly circular, nearly polar mapping orbit. Raw data are transferred to the MRO spacecraft flight computer for processing (e.g., data compression) before transmission to Earth. The ground data system and operations are based on 9 years of Mars Global Surveyor Mars Orbiter Camera on-orbit experience. CTX has been allocated 12% of the total MRO data return, or about ≥3 terabits for the nominal mission. This data volume would cover ∼9% of Mars at 6 m/pixel, but overlapping images (for stereo, mosaics, and observation of changes and meteorological events) will reduce this area. CTX acquired its first (instrument checkout) images of Mars on 24 March 2006.

1,111 citations

Journal ArticleDOI
30 Jun 2000-Science
TL;DR: Gullies within the walls of a very small number of impact craters, south polar pits, and two of the larger martian valleys display geomorphic features that can be explained by processes associated with groundwater seepage and surface runoff.
Abstract: Relatively young landforms on Mars, seen in high-resolution images acquired by the Mars Global Surveyor Mars Orbiter Camera since March 1999, suggest the presence of sources of liquid water at shallow depths beneath the martian surface. Found at middle and high martian latitudes (particularly in the southern hemisphere), gullies within the walls of a very small number of impact craters, south polar pits, and two of the larger martian valleys display geomorphic features that can be explained by processes associated with groundwater seepage and surface runoff. The relative youth of the landforms is indicated by the superposition of the gullies on otherwise geologically young surfaces and by the absence of superimposed landforms or cross-cutting features, including impact craters, small polygons, and eolian dunes. The limited size and geographic distribution of the features argue for constrained source reservoirs.

1,008 citations

Journal ArticleDOI
TL;DR: More than three years of high-resolution (1.5-20 m/pixel) photographic observations of the surface of Mars have dramatically changed our view of that planet as mentioned in this paper, and some of the most important observations and interpretations derived therefrom are that much of Mars, at least to depths of several kilometers, is layered; substantial portions of the planet has experienced burial and subsequent exhumation; layered and massive units, many kilometers thick, appear to reflect an ancient period of large-scale erosion and deposition within what are now the ancient heavily cratered regions of Mars; and
Abstract: More than three years of high-resolution (1.5-20 m/pixel) photographic observations of the surface of Mars have dramatically changed our view of that planet. Among the most important observations and interpretations derived therefrom are that much of Mars, at least to depths of several kilometers, is layered; that substantial portions of the planet have experienced burial and subsequent exhumation; that layered and massive units, many kilometers thick, appear to reflect an ancient period of large-scale erosion and deposition within what are now the ancient heavily cratered regions of Mars; and that processes previously unsuspected, including gully-forming fluid action and burial and exhumation of large tracts of land, have operated within near-contemporary times. These and many other attributes of the planet argue for a complex geology and complicated history.

822 citations

Journal ArticleDOI
01 Jan 2004-Icarus
TL;DR: In this article, the authors used infrared spectra returned by the Mars Global Surveyor Thermal Emission Spectrometer (TES) to retrieve atmospheric and surface temperature, dust and water ice aerosol optical depth, and water vapor column abundance.

784 citations