scispace - formally typeset
Search or ask a question
Author

Juho Pirskanen

Other affiliations: Bell Labs, Nokia
Bio: Juho Pirskanen is an academic researcher from Broadcom. The author has contributed to research in topics: Wireless & Physical layer. The author has an hindex of 15, co-authored 37 publications receiving 633 citations. Previous affiliations of Juho Pirskanen include Bell Labs & Nokia.

Papers
More filters
Proceedings ArticleDOI
10 Jun 2014
TL;DR: An analytical model is provided to compute the throughput and energy consumption of IEEE 802.11ah, the new Sub-1 GHz WiFi standard, and shows that the RAW mechanism can provide substantial improvements in the system performance, in terms of throughput, packet delay andEnergy consumption.
Abstract: In this paper we provide an analytical model to compute the throughput and energy consumption of IEEE 802.11ah, the new Sub-1 GHz WiFi standard. The analytical model assumes known collision and error probabilities and applies to both basic and RTS/CTS access mechanisms. Comparison with simulation results shows that the model is extremely accurate in predicting the system throughput and energy consumption. We also investigate the IEEE 802.11ah system including the new restricted access window (RAW) mechanism, and compare it to the basic scheme. The obtained results show that the RAW mechanism can provide substantial improvements in the system performance, in terms of throughput, packet delay and energy consumption, in particular in highly-loaded dense network scenarios. These findings affirm and substantiate the prospects of IEEE 802.11ah as one of the key enabling technologies for wide-scale low-cost and energy-efficient M2M deployments and IoT applications in the future.

94 citations

Journal ArticleDOI
TL;DR: The new design of WLAN 802.11ax can significantly reduce the latency of the system, and offer increased sleeping opportunities on both base station and user equipment sides leading to enhanced power savings, and is able to improve the channel utilization when compared with LTE-A.
Abstract: The exponential growth of mobile data in macronetworks has driven the evolution of communications systems toward spectrally efficient, energy efficient, and fast local area communications. It is a well-known fact that the best way to increase capacity in a unit area is to introduce smaller cells. Local area communications are currently mainly driven by the IEEE 802.11 WLAN family being cheap and energy efficient with a low number of users per access point. For the future high user density scenarios, following the 802.11 HEW study group, the 802.11ax project has been initiated to improve the WLAN system performance. The 3GPP LTE-advanced (LTE-A) also includes new methods for pico and femto cell's interference management functionalities for small cell communications. The main problem with LTE-A is, however, that the physical layer numerology is still optimized for macrocells and not for local area communications. Furthermore, the overall complexity and the overheads of the control plane and reference symbols are too large for spectrally and energy efficient local area communications. In this paper, we provide first an overview of WLAN 802.11ac and LTE/LTE-A, discuss the pros and cons of both technology areas, and then derive a new flexible TDD-based radio interface parametrization for 5G local area communications combining the best practices of both WiFi and LTE-A technologies. We justify the system design based on local area propagation characteristics and expected traffic distributions and derive targets for future local area concepts. We concentrate on initial physical layer design and discuss how it maps to higher layer improvements. This paper shows that the new design can significantly reduce the latency of the system, and offer increased sleeping opportunities on both base station and user equipment sides leading to enhanced power savings. In addition, through careful design of the control overhead, we are able to improve the channel utilization when compared with LTE-A.

72 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the application of fast-convolution (FC) filtering schemes for flexible and effective waveform generation and processing in the 5G systems and presented a generic multimode waveform processing engine, while, following the progress of 5G new radio standardization in the Third-Generation Partnership Project, the main focus is on efficient generation of subband-filtered cyclic prefix orthogonal frequency-division multiplexing (CP-OFDM) signals.
Abstract: This paper investigates the application of fast-convolution (FC) filtering schemes for flexible and effective waveform generation and processing in the fifth generation (5G) systems. FC-based filtering is presented as a generic multimode waveform processing engine while, following the progress of 5G new radio standardization in the Third-Generation Partnership Project, the main focus is on efficient generation and processing of subband-filtered cyclic prefix orthogonal frequency-division multiplexing (CP-OFDM) signals. First, a matrix model for analyzing FC filter processing responses is presented and used for designing optimized multiplexing of filtered groups of CP-OFDM physical resource blocks (PRBs) in a spectrally well-localized manner, i.e., with narrow guardbands. Subband filtering is able to suppress interference leakage between adjacent subbands, thus supporting independent waveform parametrization and different numerologies for different groups of PRBs, as well as asynchronous multiuser operation in uplink. These are central ingredients in the 5G waveform developments, particularly at sub-6-GHz bands. The FC filter optimization criterion is passband error vector magnitude minimization subject to a given subband band-limitation constraint. Optimized designs with different guardband widths, PRB group sizes, and essential design parameters are compared in terms of interference levels and implementation complexity. Finally, extensive coded 5G radio link simulation results are presented to compare the proposed approach with other subband-filtered CP-OFDM schemes and time-domain windowing methods, considering cases with different numerologies or asynchronous transmissions in adjacent subbands. Also the feasibility of using independent transmitter and receiver processing for CP-OFDM spectrum control is demonstrated

71 citations

Proceedings ArticleDOI
01 Dec 2014
TL;DR: The 5GETLA reference design is extended and the non-line-of-sight frame design is considered as a good candidate especially for small-distance indoor wireless access or inband backhaul and is particularly optimized in terms of ultra-low latency with frame duration equal to 0.05 ms, achieving the strictest physical layer latency requirements set for 5G communications.
Abstract: The projected growth of mobile data traffic requires the 5G wireless systems to support at least 1000 x larger area throughput than the existing 4G solutions This requires ultra-dense local area networks combined with millimeter-wave communications to provide high spatial multiplexing gain and wide bandwidths for multi-gigabit peak data rates In this paper, we extend our 5GETLA reference design for 5G small cell network radio interface in 3–10 GHz carrier frequencies towards millimeter-wave communications and discuss separate solutions for both line-of-sight and non-line-of-sight scenarios The non-line-of-sight frame design achieves frame duration equal to 01 ms which is one hundredth of the LTE frame duration The line-of-sight design is also considered as a good candidate especially for small-distance indoor wireless access or inband backhaul and is particularly optimized in terms of ultra-low latency with frame duration equal to 005 ms, achieving the strictest physical layer latency requirements set for 5G communications

52 citations

Proceedings ArticleDOI
25 Nov 2013
TL;DR: It is concluded that cooperative decentralized schemes are a viable option for flexible-TDD implementation in SCN environments, particularly in presence of cells with strong interference coupling and low-rate signaling capabilities.
Abstract: This paper presents a cooperative decentralized scheme for adjusting the Uplink (UL)-Downlink (DL) configuration of a Small Cell Network (SCN) with a TDD air interface. The goal of the cooperative decentralized scheme is to make a more efficient use of common wireless resources, selecting convenient TDD-frame configurations to maximize a sum utility function that takes into account both individual traffic demands and actual interference coupling situations. The cooperative decentralized scheme for UL/DL adaptation can be executed locally at each Base Station (BS), and relies solely on the exchange of low-rate signaling information among neighboring cells. Based on observed performance improvements, we conclude that cooperative decentralized schemes are a viable option for flexible-TDD implementation in SCN environments, particularly in presence of cells with strong interference coupling and low-rate signaling capabilities.

45 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A general probable 5G cellular network architecture is proposed, which shows that D2D, small cell access points, network cloud, and the Internet of Things can be a part of 5G Cellular network architecture.
Abstract: In the near future, i.e., beyond 4G, some of the prime objectives or demands that need to be addressed are increased capacity, improved data rate, decreased latency, and better quality of service. To meet these demands, drastic improvements need to be made in cellular network architecture. This paper presents the results of a detailed survey on the fifth generation (5G) cellular network architecture and some of the key emerging technologies that are helpful in improving the architecture and meeting the demands of users. In this detailed survey, the prime focus is on the 5G cellular network architecture, massive multiple input multiple output technology, and device-to-device communication (D2D). Along with this, some of the emerging technologies that are addressed in this paper include interference management, spectrum sharing with cognitive radio, ultra-dense networks, multi-radio access technology association, full duplex radios, millimeter wave solutions for 5G cellular networks, and cloud technologies for 5G radio access networks and software defined networks. In this paper, a general probable 5G cellular network architecture is proposed, which shows that D2D, small cell access points, network cloud, and the Internet of Things can be a part of 5G cellular network architecture. A detailed survey is included regarding current research projects being conducted in different countries by research groups and institutions that are working on 5G technologies.

1,899 citations

Journal ArticleDOI
TL;DR: This paper presents a detailed survey on the emerging technologies to achieve low latency communications considering three different solution domains: 1) RAN; 2) core network; and 3) caching.
Abstract: The fifth generation (5G) wireless network technology is to be standardized by 2020, where main goals are to improve capacity, reliability, and energy efficiency, while reducing latency and massively increasing connection density. An integral part of 5G is the capability to transmit touch perception type real-time communication empowered by applicable robotics and haptics equipment at the network edge. In this regard, we need drastic changes in network architecture including core and radio access network (RAN) for achieving end-to-end latency on the order of 1 ms. In this paper, we present a detailed survey on the emerging technologies to achieve low latency communications considering three different solution domains: 1) RAN; 2) core network; and 3) caching. We also present a general overview of major 5G cellular network elements such as software defined network, network function virtualization, caching, and mobile edge computing capable of meeting latency and other 5G requirements.

643 citations

Journal ArticleDOI
TL;DR: It is shown here that considering the effect of traffic-load-dependent factors on energy consumption may lead to noticeably lower benefit than in models that ignore this effect, and potential future research directions are discussed.
Abstract: Due to global climate change as well as economic concern of network operators, energy consumption of the infrastructure of cellular networks, or “Green Cellular Networking,” has become a popular research topic. While energy saving can be achieved by adopting renewable energy resources or improving design of certain hardware (e.g., power amplifier) to make it more energy-efficient, the cost of purchasing, replacing, and installing new equipment (including manpower, transportation, disruption to normal operation, as well as associated energy and direct cost) is often prohibitive. By comparison, approaches that work on the operating protocols of the system do not require changes to current network architecture, making them far less costly and easier for testing and implementation. In this survey, we first present facts and figures that highlight the importance of green mobile networking and then review existing green cellular networking research with particular focus on techniques that incorporate the concept of the “sleep mode” in base stations. It takes advantage of changing traffic patterns on daily or weekly basis and selectively switches some lightly loaded base stations to low energy consumption modes. As base stations are responsible for the large amount of energy consumed in cellular networks, these approaches have the potential to save a significant amount of energy, as shown in various studies. However, it is noticed that certain simplifying assumptions made in the published papers introduce inaccuracies. This review will discuss these assumptions, particularly, an assumption that ignores the effect of traffic-load-dependent factors on energy consumption. We show here that considering this effect may lead to noticeably lower benefit than in models that ignore this effect. Finally, potential future research directions are discussed.

384 citations

Journal ArticleDOI
TL;DR: An overview of a novel Wi-Fi technology, currently under development, which aims to organize communication between various devices used in such applications as smart grids, smart meters, smart houses, smart healthcare systems, smart industry, etc.

324 citations

Journal ArticleDOI
TL;DR: This paper provides a comprehensive overview on the extensive on-going research efforts and categorize them based on the fundamental green tradeoffs and focuses on research progresses of 4G and 5G communications, such as orthogonal frequency division multiplexing and non-orthogonal aggregation, multiple input multiple output, and heterogeneous networks.
Abstract: With years of tremendous traffic and energy consumption growth, green radio has been valued not only for theoretical research interests but also for the operational expenditure reduction and the sustainable development of wireless communications. Fundamental green tradeoffs, served as an important framework for analysis, include four basic relationships: 1) spectrum efficiency versus energy efficiency; 2) deployment efficiency versus energy efficiency; 3) delay versus power; and 4) bandwidth versus power. In this paper, we first provide a comprehensive overview on the extensive on-going research efforts and categorize them based on the fundamental green tradeoffs. We will then focus on research progresses of 4G and 5G communications, such as orthogonal frequency division multiplexing and non-orthogonal aggregation, multiple input multiple output, and heterogeneous networks. We will also discuss potential challenges and impacts of fundamental green tradeoffs, to shed some light on the energy efficient research and design for future wireless networks.

298 citations