scispace - formally typeset
Search or ask a question
Author

Julia Aniscenko

Other affiliations: Imperial College London
Bio: Julia Aniscenko is an academic researcher from National Institutes of Health. The author has contributed to research in topics: Rhinovirus & COPD. The author has an hindex of 15, co-authored 26 publications receiving 1887 citations. Previous affiliations of Julia Aniscenko include Imperial College London.
Topics: Rhinovirus, COPD, Asthma, Exacerbation, Interleukin 13

Papers
More filters
Journal ArticleDOI
TL;DR: IL-33 and type 2 cytokines are induced during a rhinovirus-induced asthma exacerbation in vivo and relate to exacerbation severity, which is a novel therapeutic approach for asthma exacerbations.
Abstract: Rationale: Rhinoviruses are the major cause of asthma exacerbations; however, its underlying mechanisms are poorly understood. We hypothesized that the epithelial cell–derived cytokine IL-33 plays ...

473 citations

Journal ArticleDOI
TL;DR: A new model of COPD exacerbation is developed that strongly supports a causal relationship between rhinovirus infection and COPD alleviation and impaired IFN production and neutrophilic inflammation may be important mechanisms in virus-induced COPd exacerbations.
Abstract: Rationale: Respiratory virus infections are associated with chronic obstructive pulmonary disease (COPD) exacerbations, but a causative relationship has not been proven. Studies of naturally occurring exacerbations are difficult and the mechanisms linking virus infection to exacerbations are poorly understood. We hypothesized that experimental rhinovirus infection in subjects with COPD would reproduce the features of naturally occurring COPD exacerbations and is a valid model of COPD exacerbations.Objectives: To evaluate experimental rhinovirus infection as a model of COPD exacerbation and to investigate the mechanisms of virus-induced exacerbations.Methods: We used experimental rhinovirus infection in 13 subjects with COPD and 13 nonobstructed control subjects to investigate clinical, physiologic, pathologic, and antiviral responses and relationships between virus load and these outcomes.Measurements and Main Results: Clinical data; inflammatory mediators in blood, sputum, and bronchoalveolar lavage; and...

349 citations

Journal ArticleDOI
04 Oct 2010-BMJ
TL;DR: Acute wheezy episodes in young children were significantly associated with bacterial infections similar to but independent of the association with virus infections.
Abstract: Objective To study the association between wheezy symptoms in young children and the presence of bacteria in the airways. Design Birth cohort study. Setting Clinical research unit in Copenhagen. Participants Children of asthmatic mothers, from age 4 weeks to 3 years, with planned visits and acute admissions to the research clinic. Main outcome measure Frequency of bacteria and virus carriage in airway aspirates during wheezy episodes and at planned visits without respiratory symptoms. Results 984 samples (361 children) were analysed for bacteria, 844 (299 children) for viruses, and 696 (277 children) for both viruses and bacteria. Wheezy episodes were associated with both bacterial infection (odds ratio 2.9, 95% confidence interval 1.9 to 4.3; P<0.001) and virusinfection(2.8,1.7to4.4;P<0.001).Theassociations of bacteria and viruses were independent of each other. Conclusion Acute wheezy episodes in young children were significantly associated with bacterial infections similar to but independent of the association with virus infections.

282 citations

Journal ArticleDOI
TL;DR: In a mouse model of allergic airway hypersensitivity, it is shown that rhinovirus infection triggers dsDNA release associated with the formation of neutrophil extracellular traps (NETs), known as NETosis, which contribute to the pathogenesis and may represent potential therapeutic targets of rhinOVirus-induced asthma exacerbations.
Abstract: Respiratory viral infections represent the most common cause of allergic asthma exacerbations. Amplification of the type-2 immune response is strongly implicated in asthma exacerbation, but how virus infection boosts type-2 responses is poorly understood. We report a significant correlation between the release of host double-stranded DNA (dsDNA) following rhinovirus infection and the exacerbation of type-2 allergic inflammation in humans. In a mouse model of allergic airway hypersensitivity, we show that rhinovirus infection triggers dsDNA release associated with the formation of neutrophil extracellular traps (NETs), known as NETosis. We further demonstrate that inhibiting NETosis by blocking neutrophil elastase or by degrading NETs with DNase protects mice from type-2 immunopathology. Furthermore, the injection of mouse genomic DNA alone is sufficient to recapitulate many features of rhinovirus-induced type-2 immune responses and asthma pathology. Thus, NETosis and its associated extracellular dsDNA contribute to the pathogenesis and may represent potential therapeutic targets of rhinovirus-induced asthma exacerbations.

232 citations

Journal ArticleDOI
TL;DR: Rinovirus infections are frequently followed by secondary bacterial infections in COPD and cleavage of the antimicrobial peptides SLPI and elafin by virus-induced neutrophil elastase may precipitate these secondaryacterial infections.
Abstract: Rationale: Chronic obstructive pulmonary disease (COPD) exacerbations are associated with virus (mostly rhinovirus) and bacterial infections, but it is not known whether rhinovirus infections precipitate secondary bacterial infections. Objectives: To investigate relationships between rhinovirus infection and bacterial infection and the role of antimicrobial peptides in COPD exacerbations. Methods: We infected subjects with moderate COPD and smokers and nonsmokers with normal lung function with rhinovirus. Induced sputum was collected before and repeatedly after rhinovirus infection and virus and bacterial loads measured with quantitative polymerase chain reaction and culture. The antimicrobial peptides secretory leukoprotease inhibitor (SLPI), elafin, pentraxin, LL-37, α-defensins and β-defensin-2, and the protease neutrophil elastase were measured in sputum supernatants. Measurements and Main Results: After rhinovirus infection, secondary bacterial infection was detected in 60% of subjects with COPD, 9.5% of smokers, and 10% of nonsmokers (P < 0.001). Sputum virus load peaked on Days 5–9 and bacterial load on Day 15. Sputum neutrophil elastase was significantly increased and SLPI and elafin significantly reduced after rhinovirus infection exclusively in subjects with COPD with secondary bacterial infections, and SLPI and elafin levels correlated inversely with bacterial load. Conclusions: Rhinovirus infections are frequently followed by secondary bacterial infections in COPD and cleavage of the antimicrobial peptides SLPI and elafin by virus-induced neutrophil elastase may precipitate these secondary bacterial infections. Therapy targeting neutrophil elastase or enhancing innate immunity may be useful novel therapies for prevention of secondary bacterial infections in virus-induced COPD exacerbations.

227 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The identification of molecules that modulate the release of NETs has helped to refine the view of the role of neutrophils in immune protection, inflammatory and autoimmune diseases and cancer.
Abstract: Neutrophils are innate immune phagocytes that have a central role in immune defence. Our understanding of the role of neutrophils in pathogen clearance, immune regulation and disease pathology has advanced dramatically in recent years. Web-like chromatin structures known as neutrophil extracellular traps (NETs) have been at the forefront of this renewed interest in neutrophil biology. The identification of molecules that modulate the release of NETs has helped to refine our view of the role of NETs in immune protection, inflammatory and autoimmune diseases and cancer. Here, I discuss the key findings and concepts that have thus far shaped the field of NET biology.

1,564 citations

Journal ArticleDOI
TL;DR: The main cause is smoking tobacco, but other factors have been identified as mentioned in this paper, such as genetic determinants, lung growth, and environmental stimuli, which is further aggravated by exacerbations, particularly in patients with severe disease.

855 citations

Journal ArticleDOI
TL;DR: When added to a regimen of guidelines-based therapy for inner-city children, adolescents, and young adults, omalizumab further improved asthma control, nearly eliminated seasonal peaks in exacerbations, and reduced the need for other medications to control asthma.
Abstract: Among 419 participants who underwent randomization (at which point 73% had moderate or severe disease), omalizumab as compared with placebo significantly reduced the number of days with asthma symptoms, from 1.96 to 1.48 days per 2-week interval, a 24.5% decrease (P<0.001). Similarly, omalizumab significantly reduced the proportion of participants who had one or more exacerbations from 48.8 to 30.3% (P<0.001). Improvements occurred with omalizumab despite reductions in the use of inhaled glucocorticoids and long-acting beta-agonists. Conclusions When added to a regimen of guidelines-based therapy for inner-city children, adolescents, and young adults, omalizumab further improved asthma control, nearly eliminated seasonal peaks in exacerbations, and reduced the need for other medications to control asthma. (Funded by the National Institute of Allergy and Infectious Diseases and Novartis; ClinicalTrials.gov number, NCT00377572.)

729 citations

Journal ArticleDOI
TL;DR: The nasopharynx is a reservoir for microbes associated with acute respiratory infections (ARIs) and targeting pathogenic bacteria within the NP microbiome could represent a prophylactic approach to asthma.

682 citations

Journal ArticleDOI
TL;DR: Findings indicate that some Prevotella strains may be clinically important pathobionts that can participate in human disease by promoting chronic inflammation.
Abstract: The microbiota plays a central role in human health and disease by shaping immune development, immune responses and metabolism, and by protecting from invading pathogens. Technical advances that allow comprehensive characterization of microbial communities by genetic sequencing have sparked the hunt for disease-modulating bacteria. Emerging studies in humans have linked the increased abundance of Prevotella species at mucosal sites to localized and systemic disease, including periodontitis, bacterial vaginosis, rheumatoid arthritis, metabolic disorders and low-grade systemic inflammation. Intriguingly, Prevotella abundance is reduced within the lung microbiota of patients with asthma and chronic obstructive pulmonary disease. Increased Prevotella abundance is associated with augmented T helper type 17 (Th17) -mediated mucosal inflammation, which is in line with the marked capacity of Prevotella in driving Th17 immune responses in vitro. Studies indicate that Prevotella predominantly activate Toll-like receptor 2, leading to production of Th17-polarizing cytokines by antigen-presenting cells, including interleukin-23 (IL-23) and IL-1. Furthermore, Prevotella stimulate epithelial cells to produce IL-8, IL-6 and CCL20, which can promote mucosal Th17 immune responses and neutrophil recruitment. Prevotella-mediated mucosal inflammation leads to systemic dissemination of inflammatory mediators, bacteria and bacterial products, which in turn may affect systemic disease outcomes. Studies in mice support a causal role of Prevotella as colonization experiments promote clinical and inflammatory features of human disease. When compared with strict commensal bacteria, Prevotella exhibit increased inflammatory properties, as demonstrated by augmented release of inflammatory mediators from immune cells and various stromal cells. These findings indicate that some Prevotella strains may be clinically important pathobionts that can participate in human disease by promoting chronic inflammation.

664 citations