scispace - formally typeset
Search or ask a question
Author

Julia Rodrigues

Bio: Julia Rodrigues is an academic researcher from Wellcome Trust Sanger Institute. The author has contributed to research in topics: Chromatin & Gene expression. The author has an hindex of 7, co-authored 8 publications receiving 386 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Analysis of chromatin accessibility and expression quantitative trait loci in stimulated or naïve macrophages identifies loci that constitutively alter chromatin but affect expression only after stimulation, thus indicating an effect on enhancer priming.
Abstract: Regulatory variants are often context specific, modulating gene expression in a subset of possible cellular states. Although these genetic effects can play important roles in disease, the molecular mechanisms underlying context specificity are poorly understood. Here, we identified shared quantitative trait loci (QTLs) for chromatin accessibility and gene expression in human macrophages exposed to IFNγ, Salmonella and IFNγ plus Salmonella. We observed that ~60% of stimulus-specific expression QTLs with a detectable effect on chromatin altered the chromatin accessibility in naive cells, thus suggesting that they perturb enhancer priming. Such variants probably influence binding of cell-type-specific transcription factors, such as PU.1, which can then indirectly alter the binding of stimulus-specific transcription factors, such as NF-κB or STAT2. Thus, although chromatin accessibility assays are powerful for fine-mapping causal regulatory variants, detecting their downstream effects on gene expression will be challenging, requiring profiling of large numbers of stimulated cellular states and time points.

236 citations

Journal ArticleDOI
TL;DR: It is estimated that recall-by-genotype studies that use iPSC-derived cells will require cells from at least 20–80 individuals to detect the effects of regulatory variants with moderately large effect sizes, despite high differentiation-induced variability.
Abstract: Induced pluripotent stem cells (iPSCs), and cells derived from them, have become key tools for modeling biological processes, particularly in cell types that are difficult to obtain from living donors. Here we present a map of regulatory variants in iPSC-derived neurons, based on 123 differentiations of iPSCs to a sensory neuronal fate. Gene expression was more variable across cultures than in primary dorsal root ganglion, particularly for genes related to nervous system development. Using single-cell RNA-sequencing, we found that the number of neuronal versus contaminating cells was influenced by iPSC culture conditions before differentiation. Despite high differentiation-induced variability, our allele-specific method detected thousands of quantitative trait loci (QTLs) that influenced gene expression, chromatin accessibility, and RNA splicing. On the basis of these detected QTLs, we estimate that recall-by-genotype studies that use iPSC-derived cells will require cells from at least 20-80 individuals to detect the effects of regulatory variants with moderately large effect sizes.

163 citations

Journal ArticleDOI
08 Jan 2019-eLife
TL;DR: It is found that promoters, splicing and 3ʹ ends were predominantly controlled by independent genetic variants enriched in distinct genomic features, suggesting promoter usage might be an underappreciated molecular mechanism mediating complex trait associations in a context-specific manner.
Abstract: Genetic variants regulating RNA splicing and transcript usage have been implicated in both common and rare diseases. Although transcript usage quantitative trait loci (tuQTLs) have been mapped across multiple cell types and contexts, it is challenging to distinguish between the main molecular mechanisms controlling transcript usage: promoter choice, splicing and 3' end choice. Here, we analysed RNA-seq data from human macrophages exposed to three inflammatory and one metabolic stimulus. In addition to conventional gene-level and transcript-level analyses, we also directly quantified promoter usage, splicing and 3' end usage. We found that promoters, splicing and 3' ends were predominantly controlled by independent genetic variants enriched in distinct genomic features. Promoter usage QTLs were also 50% more likely to be context-specific than other tuQTLs and constituted 25% of the transcript-level colocalisations with complex traits. Thus, promoter usage might be an underappreciated molecular mechanism mediating complex trait associations in a context-specific manner.

42 citations

Journal ArticleDOI
TL;DR: A novel regulation between cytokine IL-10 and lipid mediator PGE2 that functionally connects them to intestinal inflammation is shown.
Abstract: Loss of IL-10 signaling in macrophages (Mφs) leads to inflammatory bowel disease (IBD). Induced pluripotent stem cells (iPSCs) were generated from an infantile-onset IBD patient lacking a functional IL10RB gene. Mφs differentiated from IL-10RB-/- iPSCs lacked IL-10RB mRNA expression, were unable to phosphorylate STAT3, and failed to reduce LPS induced inflammatory cytokines in the presence of exogenous IL-10. IL-10RB-/- Mφs exhibited a striking defect in their ability to kill Salmonella enterica serovar Typhimurium, which was rescuable after experimentally introducing functional copies of the IL10RB gene. Genes involved in synthesis and receptor pathways for eicosanoid prostaglandin E2 (PGE2) were more highly induced in IL-10RB-/- Mφs, and these Mφs produced higher amounts of PGE2 after LPS stimulation compared with controls. Furthermore, pharmacological inhibition of PGE2 synthesis and PGE2 receptor blockade enhanced bacterial killing in Mφs. These results identify a regulatory interaction between IL-10 and PGE2, dysregulation of which may drive aberrant Mφ activation and impaired host defense contributing to IBD pathogenesis.

42 citations

Posted ContentDOI
06 Jan 2017-bioRxiv
TL;DR: The first map of regulatory variants in an iPSC-derived cell type is presented, identifying known causal variants at SNCA for Parkinson’s disease and TNFRSF1A for multiple sclerosis, as well as new candidates for migraine, Parkinson's disease, and schizophrenia.
Abstract: Induced pluripotent stem cells (iPSCs), and cells derived from them, have become key tools to model biological processes and disease mechanisms, particularly in cell types such as neurons that are difficult to access from living donors. Here, we present the first map of regulatory variants in an iPSC-derived cell type. To investigate genetic contributions to human sensory function, we performed 123 differentiations of iPSCs from 103 unique donors to a sensory neuronal fate, and measured gene expression, chromatin accessibility, and neuronal excitability. Compared with primary dorsal root ganglion, where sensory nerves collect near the spinal cord, gene expression was more variable across iPSC-derived neuronal cultures, particularly in genes related to differentiation and nervous system development. Single cell RNA-sequencing revealed that although the majority of cells are neuronal and express the expected marker genes, a substantial fraction have a fibroblast-like expression profile. By applying an allele-specific method we identify 3,778 quantitative trait loci influencing gene expression, 6,318 for chromatin accessibility, and 2,097 for RNA splicing at FDR 10%. A number of these overlap with common disease associations, and suggest candidate causal variants and target genes. These include known causal variants at SNCA for Parkinson9s disease and TNFRSF1A for multiple sclerosis, as well as new candidates for migraine, Parkinson9s disease, and schizophrenia.

25 citations


Cited by
More filters
Journal ArticleDOI
15 Jun 2017-Cell
TL;DR: It is proposed that gene regulatory networks are sufficiently interconnected such that all genes expressed in disease-relevant cells are liable to affect the functions of core disease-related genes and that most heritability can be explained by effects on genes outside core pathways.

2,257 citations

Journal ArticleDOI
TL;DR: This paper performed a two-stage genome-wide association study with 111,326 clinically diagnosed/proxy AD cases and 677,663 controls and found 75 risk loci, of which 42 were new at the time of analysis.
Abstract: Abstract Characterization of the genetic landscape of Alzheimer’s disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/‘proxy’ AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele.

403 citations

Journal ArticleDOI
TL;DR: New findings from studies performed on human β-cells or on samples obtained from patients with type 1 or type 2 diabetes mellitus are highlighted, focusing on studies performed at the β-cell level and the identification and characterization of the role of T1DM and T2DM candidate genes at theβ-celllevel.
Abstract: Loss of functional β-cell mass is the key mechanism leading to the two main forms of diabetes mellitus - type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). Understanding the mechanisms behind β-cell failure is critical to prevent or revert disease. Basic pathogenic differences exist in the two forms of diabetes mellitus; T1DM is immune mediated and T2DM is mediated by metabolic mechanisms. These mechanisms differentially affect early β-cell dysfunction and eventual fate. Over the past decade, major advances have been made in the field, mostly delivered by studies on β-cells in human disease. These advances include studies of islet morphology and human β-cell gene expression in T1DM and T2DM, the identification and characterization of the role of T1DM and T2DM candidate genes at the β-cell level and the endoplasmic reticulum stress signalling that contributes to β-cell failure in T1DM (mostly IRE1 driven) and T2DM (mostly PERK-eIF2α dependent). Here, we review these new findings, focusing on studies performed on human β-cells or on samples obtained from patients with diabetes mellitus.

331 citations

Journal ArticleDOI
Douglas P Wightman1, Iris E. Jansen1, Jeanne E. Savage1, Alexey A. Shadrin2, Shahram Bahrami2, Shahram Bahrami3, Dominic Holland4, Arvid Rongve5, Sigrid Børte3, Sigrid Børte2, Sigrid Børte6, Bendik S. Winsvold6, Bendik S. Winsvold3, Ole Kristian Drange6, Amy E Martinsen3, Amy E Martinsen2, Amy E Martinsen6, Anne Heidi Skogholt6, Cristen J. Willer7, Geir Bråthen6, Ingunn Bosnes8, Ingunn Bosnes6, Jonas B. Nielsen9, Jonas B. Nielsen6, Jonas B. Nielsen7, Lars G. Fritsche7, Laurent F. Thomas6, Linda M. Pedersen3, Maiken Elvestad Gabrielsen6, Marianne Bakke Johnsen3, Marianne Bakke Johnsen2, Marianne Bakke Johnsen6, Tore Wergeland Meisingset6, Wei Zhou10, Wei Zhou7, Petroula Proitsi11, Angela Hodges11, Richard Dobson, Latha Velayudhan11, Karl Heilbron, Adam Auton, Julia M. Sealock12, Lea K. Davis12, Nancy L. Pedersen13, Chandra A. Reynolds14, Ida K. Karlsson13, Ida K. Karlsson15, Sigurdur H. Magnusson16, Hreinn Stefansson16, Steinunn Thordardottir, Palmi V. Jonsson17, Jon Snaedal, Anna Zettergren18, Ingmar Skoog19, Ingmar Skoog18, Silke Kern19, Silke Kern18, Margda Waern18, Margda Waern19, Henrik Zetterberg, Kaj Blennow18, Kaj Blennow19, Eystein Stordal8, Eystein Stordal6, Kristian Hveem6, John-Anker Zwart6, John-Anker Zwart2, John-Anker Zwart3, Lavinia Athanasiu3, Lavinia Athanasiu2, Per Selnes20, Ingvild Saltvedt6, Sigrid Botne Sando6, Ingun Ulstein3, Srdjan Djurovic5, Srdjan Djurovic3, Tormod Fladby20, Tormod Fladby2, Dag Aarsland11, Dag Aarsland21, Geir Selbæk3, Geir Selbæk2, Stephan Ripke10, Stephan Ripke22, Stephan Ripke23, Kari Stefansson16, Ole A. Andreassen2, Ole A. Andreassen3, Danielle Posthuma1, Danielle Posthuma24 
TL;DR: This paper identified microglia, immune cells and protein catabolism as relevant genes for late-onset Alzheimer's disease, while identifying and prioritizing previously unidentified genes of potential interest.
Abstract: Late-onset Alzheimer's disease is a prevalent age-related polygenic disease that accounts for 50-70% of dementia cases. Currently, only a fraction of the genetic variants underlying Alzheimer's disease have been identified. Here we show that increased sample sizes allowed identification of seven previously unidentified genetic loci contributing to Alzheimer's disease. This study highlights microglia, immune cells and protein catabolism as relevant to late-onset Alzheimer's disease, while identifying and prioritizing previously unidentified genes of potential interest. We anticipate that these results can be included in larger meta-analyses of Alzheimer's disease to identify further genetic variants that contribute to Alzheimer's pathology.

269 citations

Journal ArticleDOI
TL;DR: A review of how challenges of integrating GWAS results with single-cell sequencing read-outs, designing functionally informed polygenic risk scores (PRS), and validating disease associated genes using genetic engineering have been addressed over the last decade are summarized.
Abstract: Genome-wide association studies (GWAS) have successfully mapped thousands of loci associated with complex traits. These associations could reveal the molecular mechanisms altered in common complex diseases and result in the identification of novel drug targets. However, GWAS have also left a number of outstanding questions. In particular, the majority of disease-associated loci lie in non-coding regions of the genome and, even though they are thought to play a role in gene expression regulation, it is unclear which genes they regulate and in which cell types or physiological contexts this regulation occurs. This has hindered the translation of GWAS findings into clinical interventions. In this review we summarize how these challenges have been addressed over the last decade, with a particular focus on the integration of GWAS results with functional genomics datasets. Firstly, we investigate how the tissues and cell types involved in diseases can be identified using methods that test for enrichment of GWAS variants in genomic annotations. Secondly, we explore how to find the genes regulated by GWAS loci using methods that test for colocalization of GWAS signals with molecular phenotypes such as quantitative trait loci (QTLs). Finally, we highlight potential future research avenues such as integrating GWAS results with single-cell sequencing read-outs, designing functionally informed polygenic risk scores (PRS), and validating disease associated genes using genetic engineering. These tools will be crucial to identify new drug targets for common complex diseases.

262 citations