scispace - formally typeset
Search or ask a question
Author

Julian F. Quinting

Bio: Julian F. Quinting is an academic researcher from Karlsruhe Institute of Technology. The author has contributed to research in topics: Numerical weather prediction & Extratropical cyclone. The author has an hindex of 11, co-authored 33 publications receiving 502 citations. Previous affiliations of Julian F. Quinting include Monash University, Clayton campus & Monash University.

Papers
More filters
Journal ArticleDOI
TL;DR: Extratropical transition (ET) is the process by which a tropical cyclone, upon encountering a baroclinic environment and reduced sea surface temperature at higher latitudes, transforms into an extraspatial cyclone.
Abstract: Extratropical transition (ET) is the process by which a tropical cyclone, upon encountering a baroclinic environment and reduced sea surface temperature at higher latitudes, transforms into an extratropical cyclone. This process is influenced by, and influences, phenomena from the tropics to the midlatitudes and from the meso- to the planetary scales to extents that vary between individual events. Motivated in part by recent high-impact and/or extensively observed events such as North Atlantic Hurricane Sandy in 2012 and western North Pacific Typhoon Sinlaku in 2008, this review details advances in understanding and predicting ET since the publication of an earlier review in 2003. Methods for diagnosing ET in reanalysis, observational, and model-forecast datasets are discussed. New climatologies for the eastern North Pacific and southwest Indian Oceans are presented alongside updates to western North Pacific and North Atlantic Ocean climatologies. Advances in understanding and, in some cases, mode...

113 citations

Journal ArticleDOI
TL;DR: The North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX) explored the impact of diabatic processes on disturbances of the jet stream and their influence on downstream high-impact weather through the deployment of four research aircraft, each with a sophisticated set of remote-sensing and in situ instruments, and coordinated with a suite of ground-based measurements as discussed by the authors.
Abstract: Multi-aircraft and ground-based observations were made over the North Atlantic in fall 2016 to investigate the importance of diabatic processes for midlatitude weather. The North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX) explored the impact of diabatic processes on disturbances of the jet stream and their influence on downstream high-impact weather through the deployment of four research aircraft, each with a sophisticated set of remote-sensing and in situ instruments, and coordinated with a suite of ground-based measurements. A total of 49 research flights were performed, including, for the first time, coordinated flights of the four aircraft; the German High Altitude and LOng Range Research Aircraft (HALO), the Deutsches Zentrum fur Luft- und Raumfahrt (DLR) Dassault Falcon 20, the French Service des Avions Francais Instrumentes pour la Recherche en Environnement (SAFIRE) Falcon 20, and the British Facility for Airborne Atmospheric Measurements (FAAM) BAe 146. The observation period from 17 Sep to 22 Oct 2016 with frequently occurring extratropical and tropical cyclones was ideal to investigate midlatitude weather over the North Atlantic. NAWDEX featured three sequences of upstream triggers of waveguide disturbances, their dynamic interaction with the jet stream, subsequent development, and eventual downstream weather impact on Europe. Examples are presented to highlight the wealth of phenomena that were sampled, the comprehensive coverage and the multi-faceted nature of the measurements. This unique dataset forms the basis for future case studies and detailed evaluations of weather and climate predictions to improve our understanding of diabatic influences on Rossby waves and downstream impact of weather systems affecting Europe.

88 citations

Journal ArticleDOI
15 Nov 2019
TL;DR: In this article, a review brings together recent research on the structure, characteristics, dynamics, and impacts of extratropical cyclones in the future, drawing on research using idealized models and complex climate simulations to evaluate what is known and unknown about these future changes.
Abstract: This review brings together recent research on the structure, characteristics, dynamics, and impacts of extratropical cyclones in the future. It draws on research using idealized models and complex climate simulations, to evaluate what is known and unknown about these future changes. There are interacting processes that contribute to the uncertainties in future extratropical cyclone changes, e.g., changes in the horizontal and vertical structure of the atmosphere and increasing moisture content due to rising temperatures. While precipitation intensity will most likely increase, along with associated increased latent heating, it is unclear to what extent and for which particular climate conditions this will feedback to increase the intensity of the cyclones. Future research could focus on bridging the gap between idealized models and complex climate models, as well as better understanding of the regional impacts of future changes in extratropical cyclones.

75 citations

Journal ArticleDOI
TL;DR: The extratropical transition (ET) of tropical cyclones often has an important impact on the nature and predictability of the midlatitude flow of the tropical cyclone as discussed by the authors.
Abstract: The extratropical transition (ET) of tropical cyclones often has an important impact on the nature and predictability of the midlatitude flow. This review synthesizes the current understand...

58 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the impact of recurving tropical cyclones (TCs) on the amplitude and frequency of synoptic-scale Rossby wave packets (RWPs) over a 30-year period.
Abstract: Many studies have highlighted the importance of recurving tropical cyclones (TCs) in triggering Rossby waves. This study investigates the impact of western North Pacific (WNP), south Indian Ocean, and North Atlantic recurving TCs on the amplitude and frequency of synoptic-scale Rossby wave packets (RWPs) over a 30-yr period. The results indicate a significant increase of RWP frequency downstream of WNP and south Indian Ocean TCs. A statistically significant RWP amplitude anomaly downstream of these TCs suggests that RWPs, which are associated with TCs, are stronger than those that generally occur in midlatitudes. North Atlantic TCs do not seem to be associated with a statistically significant increase in RWP frequency and amplitude downstream.Processes that contribute to Rossby wave amplification are identified by creating composites for WNP TCs with and without downstream development. Potential vorticity, eddy kinetic energy, and quasigeostrophic forcing diagnostics highlight dynamical mechanisms...

48 citations


Cited by
More filters
01 Apr 2013
TL;DR: It is found that wide areas of the world display a strong relationship between the number of hot days in the regions’ hottest month and preceding precipitation deficits, and effects of soil moisture-temperature coupling are geographically more widespread than commonly assumed.
Abstract: Global warming increases the occurrence probability of hot extremes, and improving the predictability of such events is thus becoming of critical importance. Hot extremes have been shown to be induced by surface moisture deficits in some regions. In this study, we assess whether such a relationship holds at the global scale. We find that wide areas of the world display a strong relationship between the number of hot days in the regions’ hottest month and preceding precipitation deficits. The occurrence probability of an above-average number of hot days is over 70% after precipitation deficits in most parts of South America as well as the Iberian Peninsula and Eastern Australia, and over 60% in most of North America and Eastern Europe, while it is below 30–40% after wet conditions in these regions. Using quantile regression analyses, we show that the impact of precipitation deficits on the number of hot days is asymmetric, i.e. extreme high numbers of hot days are most strongly influenced. This relationship also applies to the 2011 extreme event in Texas. These findings suggest that effects of soil moisture-temperature coupling are geographically more widespread than commonly assumed.

416 citations

Journal ArticleDOI
20 Jul 2018
TL;DR: Modelling and prediction efforts are starting to provide some useful information on how blocking and its impacts may change in the future, although deeper understanding of the processes at play will be needed to increase confidence in model projections.
Abstract: Purpose of Review Atmospheric blocking events represent some of the most high-impact weather patterns in the mid-latitudes, yet they have often been a cause for concern in future climate projections. There has been low confidence in predicted future changes in blocking, despite relatively good agreement between climate models on a decline in blocking. This is due to the lack of a comprehensive theory of blocking and a pervasive underestimation of blocking occurrence bymodels. This paper reviews the state of knowledge regarding blocking under climate change, with the aim of providing an overview for those working in related fields. Recent Findings Several avenues have been identified by which blocking can be improved in numerical models, though a fully reliable simulation remains elusive (at least, beyond a few days lead time). Models are therefore starting to provide some useful information on how blocking and its impacts may change in the future, although deeper understanding of the processes at play will be needed to increase confidence in model projections. There are still major uncertainties regarding the processes most important to the onset, maintenance and decay of blocking and advances in our understanding of atmospheric dynamics, for example in the role of diabatic processes, continue to inform the modelling and prediction efforts. Summary The term ‘blocking’ covers a diverse array of synoptic patterns, and hence a bewildering range of indices has been developed to identify events. Results are hence not considered fully trustworthy until they have been found using several different methods. Examples of such robust results are the underestimation of blocking by models, and an overall decline in future occurrence, albeit with a complex regional and seasonal variation. In contrast, hemispheric trends in blocking over the recent historical period are not supported by different methods, and natural variability will likely dominate regional variations over the next few decades.

278 citations

01 Dec 2013
TL;DR: In this paper, the authors investigated the connection between annual maxima (AM) daily precipitation at a pan-European scale and atmospheric rivers (ARs), narrow filaments that convey the majority of the poleward water vapor transport within extratropical cyclones.
Abstract: [1] Extreme precipitation and floods in Europe are a recurring natural hazard causing large socioeconomic damages. Here we investigate the connection between annual maxima (AM) daily precipitation at a pan-European scale and atmospheric rivers (ARs), narrow filaments that convey the majority of the poleward water vapor transport within extratropical cyclones. We show that ARs are responsible for many AM precipitation days in Western Europe. The relationship is especially strong along the western European seaboard, with some areas having eight of their top 10 AM related to ARs. The effects of ARs are also seen as far inland as Germany and Poland. Southern Europe was most affected by ARs under negative North Atlantic Oscillation (NAO) conditions, whereas northern Europe was more associated with a positive relationship between ARs and an NAO-type pattern. Our results suggest that ARs are critical in explaining the upper tail of the extreme precipitation distribution in Western Europe.

228 citations

01 Nov 2012
TL;DR: In this paper, an analysis of six missions from the 2003 Coupled Boundary Layers Air-Sea Transfer (CBLAST) field program in major hurricanes Fabian and Isabel using a new variational technique was conducted using a near-surface mean drag coefficient CD of 2.4 × 10−3 with a 46% standard deviation and a mean enthalpy coefficient CK of 1.0 × 1...
Abstract: Quantifying air–sea exchanges of enthalpy and momentum is important for understanding and skillfully predicting tropical cyclone intensity, but the magnitude of the corresponding wind speed–dependent bulk exchange coefficients is largely unknown at major hurricane wind speeds greater than 50 m s−1. Since direct turbulent flux measurements in these conditions are extremely difficult, the momentum and enthalpy fluxes were deduced via absolute angular momentum and total energy budgets. An error analysis of the methodology was performed to quantify and mitigate potentially significant uncertainties resulting from unresolved budget terms and observational errors. An analysis of six missions from the 2003 Coupled Boundary Layers Air–Sea Transfer (CBLAST) field program in major hurricanes Fabian and Isabel was conducted using a new variational technique. The analysis indicates a near-surface mean drag coefficient CD of 2.4 × 10−3 with a 46% standard deviation and a mean enthalpy coefficient CK of 1.0 × 1...

194 citations

Journal ArticleDOI
TL;DR: In this article, the authors evaluate the ability of current operational S2S prediction systems to capture two important links between the stratosphere and tropo sphere: (1) changes in probabilistic prediction skill in the extratropical stratosphere by precursors in the tropics and the extrropical troposphere and (2) change in surface predictability after stratospheric weak and strong vortex events.
Abstract: The stratosphere can have a signi_cant impact on winter surface weather on subseasonal to seasonal (S2S) timescales. This study evaluates the ability of current operational S2S prediction systems to capture two important links between the stratosphere and tropo sphere: (1) changes in probabilistic prediction skill in the extratropical stratosphere by precursors in the tropics and the extratropical troposphere and (2) changes in surface predictability in the extratropics after stratospheric weak and strong vortex events. Prob abilistic skill exists for stratospheric events when including extratropical tropospheric precursors over the North Paci_c and Eurasia, though only a limited set of models captures the Eurasian precursors. Tropical teleconnections such as the Madden‐Julian Oscillation, the Quasi‐Biennial Oscillation, and El Nin~o Southern Oscillation increase the probabilistic skill of the polar vortex strength, though these are only captured by a limited set of models. At the surface, predictability is increased over the USA, Russia, and the Middle East for weak vortex events, but not for Europe, and the change in predictability is smaller for strong vortex events for all prediction systems. Prediction systems with poorly resolved stratospheric processes represent this skill to a lesser degree. Altogether, the analyses indicate that correctly simulating stratospheric variability and stratosphere‐troposphere dynamical coupling are critical elements for skillful S2S wintertime predictions.

150 citations